www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Continous Functions" - Stetigkeit
Stetigkeit < Continous Functions < Functions < Real Analysis (Single Variable) < Real Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Stetigkeit"  | ^^ all forums  | ^ Tree of Forums  | materials

Stetigkeit: Tipp
Status: (Question) answered Status 
Date: 18:33 Mi 24/01/2018
Author: DonkeyKong

Aufgabe
An welchen stellen sind die Funktionen stetig und an welchen Stellen unstetig?
Begründen Sie ihre Antwort !

a)  [mm] f_1(x)=x [/mm]
b)  [mm] f_2(x)=\bruch{1}{x^2-4} [/mm]
c)  [mm] f_3(x)=\bruch{exp(x)}{ln(x)} [/mm]

Reicht es für a) einfach zu sagen:

Es sei a [mm] \in [/mm] D, dann ist [mm] \limes_{x\rightarrow a} [/mm] x = a = f(a).
Damit ist [mm] f_1(x) [/mm] auf ganz D stetig.

        
Bezug
Stetigkeit: Antwort
Status: (Answer) finished Status 
Date: 18:56 Mi 24/01/2018
Author: Diophant

Hallo,

> An welchen stellen sind die Funktionen stetig und an
> welchen Stellen unstetig?
> Begründen Sie ihre Antwort !

>

> a) [mm]f_1(x)=x[/mm]
> b) [mm]f_2(x)=\bruch{1}{x^2-4}[/mm]
> c) [mm]f_3(x)=\bruch{exp(x)}{ln(x)}[/mm]
> Reicht es für a) einfach zu sagen:

>

> Es sei a [mm]\in[/mm] D, dann ist [mm]\limes_{x\rightarrow a}[/mm] x = a =
> f(a).
> Damit ist [mm]f_1(x)[/mm] auf ganz D stetig.

Das passt. Wenn bei solchen Aufgaben kein Definitionsbereich vorgegeben ist, dann ist normalerweise die größtmögliche Teilmenge von [mm] \IR [/mm] gemeint, also im Fall der Aufgabe a) eben [mm] D=\IR. [/mm]

Wobei: kann es sein, dass da doch Definitionsmengen mit angegeben sind? Falls ja, dann reiche sie doch noch nach. Wenn bspw. für c) [mm] D=\IR_{>0}\setminus\{ 1 \} [/mm] vorgegeben wäre, dann wäre eben noch klarer, warum man bei dieser Teilaufgabe die Stelle x=0 gar nicht erst betrachten muss, wohl aber x=1.

EDIT: der durchgestrichene Teil war Unsinn.


Gruß, Diophant

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Question) answered Status 
Date: 19:13 Mi 24/01/2018
Author: DonkeyKong

Hi,

nein es ist kein Definitionsbereich angegeben.
Wie mache ist das bei b) ? Die Unstetigkeitsstellen sind ja 2 und -2 jedoch kann ich den Limes nicht berechnen, da ich dann [mm] \bruch{1}{0} [/mm] habe.

Gruß

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Answer) finished Status 
Date: 21:53 Mi 24/01/2018
Author: leduart

Hallo
bei [mm] x=\pm [/mm] 2 ist die Funktion nicht definiert, also auch nicht stetig, man kann auch sagen sie hat jeweisl einen Pol mit Vorzeichenwechsel.
bei [mm] e^x/(ln(x) [/mm] wieder bei x=1 nicht definiert, bei x=0 auch nicht definiert, man kann stetig ergänzen durch f(0)=0
Gruß leduart

Bezug
                                
Bezug
Stetigkeit: Mitteilung
Status: (Statement) No reaction required Status 
Date: 22:01 Mi 24/01/2018
Author: Gonozal_IX

Hiho,

Hier stand quatsch

Gruß,
Gono


Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Answer) finished Status 
Date: 10:38 Do 25/01/2018
Author: fred97


> Hi,
>  
> nein es ist kein Definitionsbereich angegeben.
>  Wie mache ist das bei b) ? Die Unstetigkeitsstellen sind
> ja 2 und -2


Nein. Das sind keine Unstetigkeitsstellen der Funktion, weil dies Funktion dort nicht def. ist.

Ist $f:D [mm] \to \IR$ [/mm] eine Funktion, so ist nur in Punkten [mm] $x_0 \in [/mm] D$ die Frage nach der Stetig keit von f sinvoll.


> jedoch kann ich den Limes nicht berechnen, da
> ich dann [mm]\bruch{1}{0}[/mm] habe.
>  
> Gruß


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Answer) finished Status 
Date: 09:38 Do 25/01/2018
Author: Gonozal_IX

Hiho,

ich würde die Frage kurz und knapp beantworten mit: "Alle gegebenen Funktionen sind auf ihrem gesamten Definitionsbereich stetig."

Wie man an der Antwort erkennt… die Frage ist schlichtweg schlecht gestellt.

Eine korrekt gestellte Frage wäre etwas wie: Benenne den maximalen Definitionsbereich der gegebenen Funktionen. An welchen Definitionslücken lassen die Funktionen sich stetig fortsetzen.

Gruß,
Gono

Bezug
View: [ threaded ] | ^ Forum "Stetigkeit"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 1h 17m 7. HJKweseleit
USons/Bedeutung von dx, dt in Formel
Status vor 1h 51m 9. HJKweseleit
S8-10/Ableitung
Status vor 2h 13m 8. HJKweseleit
ZahlTheo/rat. Zahl = Summe von Brüchen
Status vor 2h 50m 3. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 3h 34m 3. HJKweseleit
SGeradEbene/Parallele Ebenen
^ Seitenanfang ^
www.vorhilfe.de