www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Mo 03.12.2007
Autor: Mathefragen

Hallo! Ich soll bestimmen, ob die Funktionen stetig sind, oder nicht.. Dies wollte ich mit dem folgenden Kriterium machen: [mm] \limes_{x\rightarrow\x0} [/mm] f(x) = f(x0). Dies soll ich für foglende Funktion bestimmen:
[mm] f(x)=\begin{cases}\wurzel{1-x} , & \mbox{für } |x| \le 1 \\ x, & \mbox{für } |x|>1 \mbox{ } \end{cases}. [/mm] Um nun die Stetigkeit zu überprüfen, habe ich folgendes gemacht: [mm] \limes_{x\rightarrow\x0} \wurzel{1-x}=0 [/mm] .. es soll aber x rauskommen oder? Denn es soll ja f(x0) rauskommen und das ist doch gleich x0. Ich bin irgendwie verwirrt, wär super, wenn mir da jmd. weiterhelfen könnte! :-)

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 03.12.2007
Autor: max3000

Hallo.

Deine kritischen Punkte sind ja 1 und -1. Desswegen musst du in diesen Punkten die Stetigkeit nachweisen. Dass die Funktion in allen anderen Punkten stetig ist, folgt aus einigen Sätzen, die ihr sicherlich in der Vorlesung gemachtg habt, zum Beispiel Polynome sind Stetig, Wurzelfunktion ist stetig, Komposition stetiger Funktionen ist stetig.

Aber nun zu den kritischen Punkten, es muss der rechts- und linksseitige Grenzwert gleich sein.

[mm] \limes_{x\rightarrow1-}\wurzel{1-x}=0 [/mm]
[mm] \limes_{x\rightarrow1+}x=1 [/mm]

Beide Grenzwerte sind ungleich, also ist die Funktion unstetig.

Ach ja: Schreib doch bitte mal deinen Studiengang in dein Profil. Das ist nämlich die Definition von Stetigkeit für Ingenieure ^^.

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mo 03.12.2007
Autor: Mathefragen

Dankeschön! :-) Aber warum ist der [mm] \limes_{x\rightarrow\(1-)} [/mm] = 0? Ich dachte, dass da [mm] \wurzel{2} [/mm] herauskommt, denn [mm] \wurzel{1-(-1)} [/mm] macht doch [mm] \wurzel{2}, [/mm] oder bin ich da auf dem total falschen  Nenner? Und was ist denn in dem Fall mein x0? und was mein f(x0)? *verwirrtsei*

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mo 03.12.2007
Autor: max3000

Wir haben gesagt [mm] x\rightarrow1- [/mm]

1- ist nicht das selbe wie -1.
1- bedeutet, dass sich der Wert x an die 1 annähert, aber von links, also immer noch kleiner als 1 ist.

Bezug
                                
Bezug
Stetigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:38 Mi 05.12.2007
Autor: Mathefragen

Hallo! Ich habe noch eine Verständnisfrage zur Stetigkeit, die mir nicht ganz klar ist. Wieso kann ich daraus schließen, dass die WUrzelfunktion [mm] \wurzel{1-x^{4}} [/mm] für Betragx [mm] \le [/mm] 1 stetig ist, weil sie eine Umkehrfunktion von Potenzfunktionen ist?

Bezug
                                        
Bezug
Stetigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Fr 07.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de