www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:24 So 15.03.2009
Autor: jos3n

Aufgabe
Ich habe ein Problem mit stetigkeitsaufgaben und würde mich freuen, wenn mir jemand weiterhilft.

So jetzt ganz banal:

Überfrüfe f(x)= [mm] x^2 [/mm] auf stetigkeit im Punk f(-1)


Dann fang ich mal an.
für alle [mm] \varepsilon [/mm] >0 gibt es ein [mm] \delta [/mm] >0, für alle x,y :

[mm] |x-x_{0}| [/mm] < [mm] \delta [/mm] => |f(x) - [mm] f(x_{0})| [/mm] < [mm] \varepsilon [/mm]

das ist quasi definition.

|x-(-1)| < [mm] \delta [/mm] => [mm] |x^2 [/mm] - [mm] (-1)^2| [/mm] < [mm] \varepsilon [/mm]

und wie mach ich nu weiter?

danke im vorraus

jo*

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 So 15.03.2009
Autor: schachuzipus

Hallo jos3n,



> Ich habe ein Problem mit stetigkeitsaufgaben und würde mich
> freuen, wenn mir jemand weiterhilft.
>  
> So jetzt ganz banal:
>  
> Überfrüfe f(x)= [mm]x^2[/mm] auf stetigkeit im Punk f(-1)
>  
>
> Dann fang ich mal an.
>  für alle [mm]\varepsilon[/mm] >0 gibt es ein [mm]\delta[/mm] >0, für alle
> x,y :
>  
> [mm]|x-x_{0}|[/mm] < [mm]\delta[/mm] => |f(x) - [mm]f(x_{0})|[/mm] < [mm]\varepsilon[/mm]
>  
> das ist quasi definition.
>  
> |x-(-1)| < [mm]\delta[/mm] => [mm]|x^2[/mm] - [mm](-1)^2|[/mm] < [mm]\varepsilon[/mm]

Genau das ist zu zeigen, dass für beliebiges [mm] $\varepsilon>0$ [/mm] bei geeigneter Wahl von [mm] $\delta$ [/mm] diese Implikation gilt

>  
> und wie mach ich nu weiter?

Nutze die 3.binomische Formel:

[mm] $|f(x)-f(-1)|=|x^2-1|=|(x+1)\cdot{}(x-1)|=|x+1|\cdot{}|x-1|$ [/mm]

Nun bedenke, dass [mm] $|x-1|=|(x+1)-2|\le|x+1|+2$ [/mm] gilt nach [mm] $\triangle$-Ungleichung [/mm]

Kommst du nun auf ein passendes [mm] $\delta$, [/mm] so dass für [mm] $|x+1|<\delta$ [/mm] gilt, dass [mm] $|x^2-1|<\varepsilon$ [/mm] ?


>  
> danke im vorraus
>  
> jo*


LG

schachuzipus

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 So 15.03.2009
Autor: jos3n

[mm] \delta [/mm] =  [mm] \bruch{\varepsilon}{2} [/mm] ??

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 15.03.2009
Autor: leduart

Hallo
Hast du die [mm] \delta [/mm] mal eingesetz, und gezeigt, dass du dan , [mm] \epsilon [/mm] erreichst?
Du hast ne ausfuehrliche Antwort gekriegt, wieso verraetst du uns dann nicht, wie du auf die Idee kommst .
Gruss leduart

Bezug
                                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 So 15.03.2009
Autor: jos3n

meinst jetzt mich? ich hab nämlich gerade kein plan! ist das richtig mit [mm] \varepsilon [/mm] halbe?

Bezug
                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 So 15.03.2009
Autor: jos3n

steht dann da:

[mm] \delta^2 [/mm] +2 < [mm] \varepsilon [/mm] oder?

Bezug
                                        
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 So 15.03.2009
Autor: leduart

Hallo
Du wirst doch noch [mm] \delta*(delta+2) [/mm] multiplizieren koennen auch ohne Plan.
Gruss leduart

Bezug
                                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 16.03.2009
Autor: jos3n

ja richtig, also

[mm] \delta^2 [/mm] + [mm] 2\delta [/mm] < [mm] \varepsilon [/mm]

dann wählt man also [mm] \varepsilon [/mm] = 2 und dazu [mm] \delta [/mm] = 1/2

??

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de