www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Stetigkeit
Stetigkeit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:04 Mo 13.12.2010
Autor: paula_88

Aufgabe
Seien [mm] f,g:\IR\to\IR [/mm] zwei stetige Funktionen mit
                        
                              f(x) = g(x) für alle [mm] x\in\IQ [/mm]
                              
Man zeige dass dann bereits f(x) = g(x) für alle [mm] x\in\IR [/mm] gilt.

Hallo,
ich weiß nicht wie ich an diese Aufgabe herangehen soll und würde sie gerne mit Hilfe Schritt für Schritt versuchen zu lösen.
Was wäre der erste Schritt?
Viele Grüße und vielen Dank,
Paula.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 13.12.2010
Autor: Lippel

Hallo,

> Seien [mm]f,g:\IR\to\IR[/mm] zwei stetige Funktionen mit
>                          
> f(x) = g(x) für alle [mm]x\in\IQ[/mm]
>                                
> Man zeige dass dann bereits f(x) = g(x) für alle [mm]x\in\IR[/mm]
> gilt.
>  Hallo,
>  ich weiß nicht wie ich an diese Aufgabe herangehen soll
> und würde sie gerne mit Hilfe Schritt für Schritt
> versuchen zu lösen.
>  Was wäre der erste Schritt?

Du weißt ja bereits, dass f und g identisch sind für alle [mm]x\in\IQ[/mm].
Jetzt betrachte einen beliebiges $x [mm] \in \IR$. [/mm] Du willst zeigen: $f(x)=g(x)$.
Ihr habt mit Sicherheit in der Vorlesung gehabt, dass man jede relle Zahl beliebig genau durch rationale Zahlen approximieren kann (Intervallschachtelung). Nun betrachte eine Folge [mm] $(x_n)_{n\in\IN}, x_n \in \IQ$ [/mm] die gegen das oben geählte $x [mm] \in \IR$ [/mm] konvergiert.
Was weißt du über die Funktionswerte [mm] $f(x_n), g(x_n)$? [/mm]
Um dann eine Aussage über f(x) und g(x) zu treffen, musst du die Stetigkeit der Funktionen f und g ins Spiel bringen.
Hilft dir das weiter?

Viele Grüße, Lippel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de