www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mo 16.05.2011
Autor: fract

Aufgabe
Untersuchen Sie die folgenden Abbildungen von [mm] \IR^2 [/mm] nach [mm] \IR [/mm] auf Stetigkeit:

1) [mm] f(x,y)=\begin{cases} \bruch{(xy)^2}{x^2+y^2}, & \mbox{für } (x,y) \not= (0,0) \mbox{ } \\ 0, & \mbox{für } (x,y) = (0,0) \mbox{ } \end{cases} [/mm]

2) [mm] f(x,y)=\begin{cases} \bruch{x^4-y^4}{x^4+y^4}, & \mbox{für } (x,y) \not= (0,0) \mbox{ } \\ 0, & \mbox{für } (x,y) = (0,0) \mbox{ } \end{cases} [/mm]

so meine Frage ist jetze, wie geh ich vor!?

muss ich das mit [mm] \varepsilon-\delta [/mm] machen oder gibts da noch andere wege bei den beiden Aufgaben?

danke für Antworten.


// also ich mein für (x,y) [mm] \not= [/mm] (0,0) sind ja beide funktionen als komposition stetiger funktionen selbst wieder stetig. Also müsst ich doch eigentlich nur die Stetigkeit in (0,0) untersuchen.. richtig soweit? wie weiter?


*Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.*

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Mo 16.05.2011
Autor: kamaleonti

Moin,
      [willkommenmr]!

> Untersuchen Sie die folgenden Abbildungen von [mm]\IR^2[/mm] nach
> [mm]\IR[/mm] auf Stetigkeit:
>  
> 1) [mm]f(x,y)=\begin{cases} \bruch{(xy)^2}{x^2+y^2}, & \mbox{für } (x,y) \not= (0,0) \mbox{ } \\ 0, & \mbox{für } (x,y) = (0,0) \mbox{ } \end{cases}[/mm]
>  
> 2) [mm]f(x,y)=\begin{cases} \bruch{x^4-y^4}{x^4+y^4}, & \mbox{für } (x,y) \not= (0,0) \mbox{ } \\ 0, & \mbox{für } (x,y) = (0,0) \mbox{ } \end{cases}[/mm]
>  
> so meine Frage ist jetze, wie geh ich vor!?
>  
> muss ich das mit [mm]\varepsilon-\delta[/mm] machen oder gibts da
> noch andere wege bei den beiden Aufgaben?
>  
> danke für Antworten.
>  
>
> // also ich mein für (x,y) [mm]\not=[/mm] (0,0) sind ja beide
> funktionen als komposition stetiger funktionen selbst
> wieder stetig. Also müsst ich doch eigentlich nur die
> Stetigkeit in (0,0) untersuchen.. richtig soweit? wie weiter?

[ok]

zu 1) Folgenkriterium für Stetigkeit.
Zeige etwa, wenn [mm] a_k:=(b_k, c_k)\to(0,0), k\to\infty, [/mm] dann [mm] |f(a_k)|=\left|\frac{(b_kc_k)^2}{b_k^2+c_k^2}\right|\to(0,0),k\to\infty [/mm]
Im Nenner kannst du mit dem Maximum Minimum der beiden Folgen abschätzen und so gewissermaßen kürzen und den Grenzwert von [mm] f(a_k) [/mm] am verbleibenden Nenner ablesen [...]

zu 2) Hier sieht man anhand des Folgenkriteriums für Stetigkeit, dass die Funktion nicht stetig in (0,0) ist.
Betrachte mal die Folge [mm] a_k:=(1/k,0). [/mm] Dann gilt [mm] a_k\to(0,0), k\to\infty. [/mm] Aber was passiert mit [mm] f(a_k), k\to\infty [/mm] ?

>  
>
> *Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.*

LG

Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Mo 16.05.2011
Autor: fract

ok, danke erstmal für die hilfe^^

> zu 2) Hier sieht man anhand des Folgenkriteriums für
> Stetigkeit, dass die Funktion nicht stetig in (0,0) ist.
>  Betrachte mal die Folge [mm]a_k:=(1/k,0).[/mm] Dann gilt
> [mm]a_k\to(0,0), k\to\infty.[/mm] Aber was passiert mit [mm]f(a_k), k\to\infty[/mm]

Sei  [mm] a_k:=(b_k, c_k)\to(0,0), k\to\infty, [/mm] betrachte nun [mm] a_k:=(1/k,0). [/mm] Dann gilt [mm] a_k\to(0,0) [/mm] für [mm] k\to\infty, [/mm] aber es gilt auch:
[mm] f(a_k) [/mm] = f(1/k,0) = [mm] \left|\frac{(1/k)^4-0}{(1/k)^4+0}\right| [/mm] = 1 [mm] \not= [/mm] 0, für  [mm] k\to\infty [/mm]
Damit ist f nicht stetig in (0,0).   richtig so?

> zu 1) Folgenkriterium für Stetigkeit.
>  Zeige etwa, wenn [mm]a_k:=(b_k, c_k)\to(0,0), k\to\infty,[/mm] dann
> [mm]|f(a_k)|=\left|\frac{(b_kc_k)^2}{b_k^2+c_k^2}\right|\to(0,0),k\to\infty[/mm]
>  Im Nenner kannst du mit dem Maximum der beiden Folgen
> abschätzen und so gewissermaßen kürzen und den Grenzwert
> von [mm]f(a_k)[/mm] am verbleibenden Nenner ablesen [...]

Ok. Also ich versteh das jetze nicht ganz wie du das meinst mit dem abschätzen!? Aber ich versuchs mal:

Sei [mm]a_k:=(b_k, c_k)\to(0,0), k\to\infty,[/mm] Dann gilt:
[mm]|f(a_k)|=\left|\frac{(b_kc_k)^2}{b_k^2+c_k^2}\right|\ge\left|\frac{(b_kc_k)^2}{2*b_k^2}\right|=\left|\frac{c_k^2}{2}\right| \to 0[/mm], für [mm] k\to\infty, [/mm] mit [mm] b_k^2 \ge c_k^2, \forall [/mm] k

meinst du das so, oder wie!?!

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mo 16.05.2011
Autor: kamaleonti


> ok, danke erstmal für die hilfe^^
>  
> > zu 2) Hier sieht man anhand des Folgenkriteriums für
> > Stetigkeit, dass die Funktion nicht stetig in (0,0) ist.
>  >  Betrachte mal die Folge [mm]a_k:=(1/k,0).[/mm] Dann gilt
> > [mm]a_k\to(0,0), k\to\infty.[/mm] Aber was passiert mit [mm]f(a_k), k\to\infty[/mm]
> Sei  [mm]a_k:=(b_k, c_k)\to(0,0), k\to\infty,[/mm] betrachte nun
> [mm]a_k:=(1/k,0).[/mm] Dann gilt [mm]a_k\to(0,0)[/mm] für [mm]k\to\infty,[/mm] aber
> es gilt auch:
>  [mm]f(a_k)[/mm] = f(1/k,0) = [mm]\frac{(1/k)^4-0}{(1/k)^4+0}[/mm] = 1 [mm]\not=[/mm] 0, für [mm]k\to\infty[/mm]
> Damit ist f nicht stetig in (0,0).   richtig so?

[ok]

>  
> > zu 1) Folgenkriterium für Stetigkeit.
>  >  Zeige etwa, wenn [mm]a_k:=(b_k, c_k)\to(0,0), k\to\infty,[/mm]
> dann
> >
> [mm]|f(a_k)|=\left|\frac{(b_kc_k)^2}{b_k^2+c_k^2}\right|\to(0,0),k\to\infty[/mm]
>  >  Im Nenner kannst du mit dem Maximum der beiden Folgen
> > abschätzen und so gewissermaßen kürzen und den Grenzwert
> > von [mm]f(a_k)[/mm] am verbleibenden Nenner ablesen [...]
>  
> Ok. Also ich versteh das jetze nicht ganz wie du das meinst
> mit dem abschätzen!? Aber ich versuchs mal:
>
> Sei [mm]a_k:=(b_k, c_k)\to(0,0), k\to\infty,[/mm] Dann gilt:
>  
> [mm]|f(a_k)|=\left|\frac{(b_kc_k)^2}{b_k^2+c_k^2}\right|\ge\left|\frac{(b_kc_k)^2}{2*b_k^2}\right|=\left|\frac{c_k^2}{2}\right| \to 0[/mm],
> für [mm]k\to\infty,[/mm] mit [mm]b_k^2 \ge c_k^2, \forall[/mm] k
>
> meinst du das so, oder wie!?!

Nein, so war das nicht ganz gemeint. Ich hatte mich mit min/max vertan.

[mm] |f(a_k)|=\frac{(b_kc_k)^2}{b_k^2+c_k^2}\le\frac{b_k^2c_k^2}{2\min(b_k^2, c_k^2)}=\frac{\max(b_k^2, c_k^2)}{2}\to 0,k\to\infty [/mm]

LG


Bezug
                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Mo 16.05.2011
Autor: fract


> Nein, so war das nicht ganz gemeint. Ich hatte mich mit
> min/max vertan.
>  
> [mm]|f(a_k)|=\frac{(b_kc_k)^2}{b_k^2+c_k^2}\le\frac{b_k^2c_k^2}{2\min(b_k^2, c_k^2)}=\frac{\max(b_k^2, c_k^2)}{2}\to 0,k\to\infty[/mm]
>  
> LG
>  


ah oke so macht das ganze natürlich sinn und ich weiß auch, wie du's gemeint hast.. Danke schönen abend noch

lg fract

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Di 17.05.2011
Autor: fred97

Zu a): Es gilt:

           $0 [mm] \le [/mm] f(x,y) [mm] \le x^2+y^2$ [/mm]

Daraus folgt sofort die Stetigkeit in (0,0)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de