www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:11 Mi 25.04.2012
Autor: saendra

Aufgabe
hey! Ich soll bei $ f: [mm] \IR^2\to \IR,\ f(x;y)=x^2+y^2 [/mm] $ die Stetigkeit in (0;0) beweisen.

"Seien [mm] (X,d),\ (Y,d) [/mm] metrische Räume und [mm] D \subset X [/mm]. Eine Abbildung [mm] f : D \to Y [/mm] heißt stetig in [mm] x_0 \in D [/mm], wenn es zu jedem [mm] \varepsilon > 0 [/mm] ein [mm] \delta > 0 [/mm] gibt mit [mm] d(f(x), f(x_0)) < \varepsilon\quad \forall x\in D [/mm] mit [mm] d(x, x_0) <\delta [/mm]."


Was ist das für eine Metrik [mm] d [/mm]? Ist das die euklidische Metrik? Ich tut jetzt einfach mal so :)


[mm] d(f(x), f(x_0))\ =\ d(f(x), f(0;0))\ =\ ||f(x)-f(0;0)|| =\ ||f(x)-f(0;0)||\ =\ ||x^2+y^2||[/mm]


aber wie gehts jetzt weiter?

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 25.04.2012
Autor: fred97


> hey! Ich soll bei [mm]f: \IR^2\to \IR,\ f(x;y)=x^2+y^2[/mm] die
> Stetigkeit in (0;0) beweisen.
>  "Seien [mm](X,d),\ (Y,d)[/mm] metrische Räume und [mm]D \subset X [/mm].
> Eine Abbildung [mm]f : D \to Y[/mm] heißt stetig in [mm]x_0 \in D [/mm],
> wenn es zu jedem [mm]\varepsilon > 0[/mm] ein [mm]\delta > 0[/mm] gibt mit
> [mm]d(f(x), f(x_0)) < \varepsilon\quad \forall x\in D[/mm] mit [mm]d(x, x_0) <\delta [/mm]."
>  
>
> Was ist das für eine Metrik [mm]d [/mm]? Ist das die euklidische
> Metrik? Ich tut jetzt einfach mal so :)

Ja, auf dem Def. - bereich von f, also auf [mm] \IR^2 [/mm] hast Du die euklidische Norm. f geht nach [mm] \IR, [/mm] dort hast Du den betrag.

>  
>
> [mm]d(f(x), f(x_0))\ =\ d(f(x), f(0;0))\ =\ ||f(x)-f(0;0)|| =\ ||f(x)-f(0;0)||\ =\ ||x^2+y^2||[/mm]
>  
>
> aber wie gehts jetzt weiter?

Besser:

$d(f(x,y), [mm] f(x_0))\ [/mm] =\ d(f(x,y), f(0,0))\ =\ [mm] |f(x,y)-f(0,0)|=|f(x,y)|=|x^2+y^2|=x^2+y^2=||(x,y)||^2$ [/mm]

Hilft das ?

FRED


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mi 25.04.2012
Autor: saendra

Ich denke ja, auf jeden Fall Danke Fred. Ich hab es echt etwas verwirrend hingeschrieben.

Die Definition ist ja aber nicht gerade pflegeleicht. Soll ich jetzt zuerst ein beliebiges, aber festes [mm]\varepsilon >0[/mm] vorgeben, für welches [mm] d(f(x), f(x_0)) [/mm] kleiner sein soll und dann das [mm] \delta [/mm] finden?

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Mi 25.04.2012
Autor: fred97


> Ich denke ja, auf jeden Fall Danke Fred. Ich hab es echt
> etwas verwirrend hingeschrieben.
>  
> Die Definition ist ja aber nicht gerade pflegeleicht. Soll
> ich jetzt zuerst ein beliebiges, aber festes [mm]\varepsilon >0[/mm]
> vorgeben, für welches [mm]d(f(x), f(x_0))[/mm] kleiner sein soll
> und dann das [mm]\delta[/mm] finden?

Ja

FRED


Bezug
                                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Do 26.04.2012
Autor: saendra

okay: $ [mm] d\Big(f(x,y), f(x_0,y_0)\Big)\ [/mm] =\ [mm] |f(x,y)-f(0,0)|=|f(x,y)|=|x^2+y^2|=x^2+y^2=||(x,y)||^2 [/mm] $

Und laut Definition muss immer dies gelten: $ [mm] d\Big((x,y),(x_0,y_0)\Big) <\delta \iff ||(x,y)-(0,0)||<\delta \iff ||(x,y)||<\delta [/mm] $


Jetzt darf ich doch dies machen (warum darf ich das so abschätzen??): $ [mm] ||(x,y)||^2<\delta^2 [/mm] $

weiter komm ich nicht :(

Bezug
                                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Do 26.04.2012
Autor: fred97


> okay: [mm]d\Big(f(x,y), f(x_0,y_0)\Big)\ =\ |f(x,y)-f(0,0)|=|f(x,y)|=|x^2+y^2|=x^2+y^2=||(x,y)||^2[/mm]
>  
> Und laut Definition muss immer dies gelten:
> [mm]d\Big((x,y),(x_0,y_0)\Big) <\delta \iff ||(x,y)-(0,0)||<\delta \iff ||(x,y)||<\delta[/mm]
>  
>
> Jetzt darf ich doch dies machen (warum darf ich das so
> abschätzen??): [mm]||(x,y)||^2<\delta^2[/mm]
>  
> weiter komm ich nicht :(



Zu vorgegebenem [mm] \varepsilon>0 [/mm] mußt Du ein [mm] \delta>0 [/mm] finden mit der Eigenschaft:

           $||(x,y)||< [mm] \delta$ \Rightarrow $||(x,y)||^2< \varepsilon$ [/mm] .

Na, wie kannst Du also  [mm] \delta [/mm] (in Abhängigkeit) von  [mm] \varepsilon [/mm] wählen ?

FRED

Bezug
                                                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Do 26.04.2012
Autor: saendra

Danke :)

hmmm also es gilt $ ||(x,y)||< [mm] \delta [/mm] $ und $ [mm] ||(x,y)||^2< \varepsilon [/mm] $ .

Wenn ich jetzt $ [mm] ||(x,y)||^2< \varepsilon \iff [/mm] ||(x,y)||< [mm] \wurzel{\varepsilon} [/mm] $ mache

bekomme ich $ [mm] \delta [/mm] = [mm] \wurzel{\varepsilon} [/mm] $ heraus.


Stimmt das? Oder $ [mm] \delta \geq \wurzel{\varepsilon} [/mm] $ oder $ [mm] \delta \leq \wurzel{\varepsilon} [/mm] $ ?

Bezug
                                                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:35 Do 26.04.2012
Autor: fred97


> Danke :)
>  
> hmmm also es gilt [mm]||(x,y)||< \delta[/mm] und [mm]||(x,y)||^2< \varepsilon[/mm]
> .
>
> Wenn ich jetzt [mm]||(x,y)||^2< \varepsilon \iff ||(x,y)||< \wurzel{\varepsilon}[/mm]
> mache
>  
> bekomme ich [mm]\delta = \wurzel{\varepsilon}[/mm] heraus.

Bingo !

FRED

>  
>
> Stimmt das? Oder [mm]\delta \geq \wurzel{\varepsilon}[/mm] oder
> [mm]\delta \leq \wurzel{\varepsilon}[/mm] ?


Bezug
                                                                
Bezug
Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Mo 30.04.2012
Autor: saendra

:D danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de