www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:54 Mo 30.04.2012
Autor: kord89

Aufgabe
[mm] f:R^2 \to \IR f(x,y)\mapsto e^{xy/(x^2+y^2)} [/mm] für [mm] (x,y)\not= [/mm] (0,0)  1 für (0,0)

Bestimmen sie die Punkte in denen f stetig ist.

Hallo,

zur folgenden Aufgabe soll ich nun die punkte bestimmen in denen f Stetig ist. Das f über all ausser in (0,0) stetig ist klar. Um zu zeigen das f in (0,0) stetig ist müsste ich ja nun zeigen, dass von einer beliebigen Folge die gegen Null konvergiert auch der Quotient der in der e-Funktion steht gegen Null konvergiert. Nur wie tue ich dies?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 30.04.2012
Autor: Marcel

Hallo,

> [mm]f:R^2 \to \IR f(x,y)\mapsto e^{xy/(x^2+y^2)}[/mm] für
> [mm](x,y)\not=[/mm] (0,0)  1 für (0,0)
>  
> Bestimmen sie die Punkte in denen f stetig ist.
>  Hallo,
>  
> zur folgenden Aufgabe soll ich nun die punkte bestimmen in
> denen f Stetig ist.

>

> Das f über all ausser in (0,0) stetig
> ist klar.

[ok] Du solltest aber auf Deinem bearbeiteten Aufgabenblatt auch begründen, warum das klar ist. Denn das DIR das klar ist, reicht nicht als Begründung ;-)

> Um zu zeigen das f in (0,0) stetig ist müsste
> ich ja nun zeigen, dass von einer beliebigen Folge die
> gegen Null konvergiert auch der Quotient der in der
> e-Funktion steht gegen Null konvergiert. Nur wie tue ich
> dies?

Überdenke erst mal, ob die Funktion wirklich stetig in [mm] $(0,0)\,$ [/mm] ist:
Wie sieht das ganze für [mm] $x=x_n=y=y_n:=1/n\,$ [/mm] denn aus? Für diese [mm] $(x,y)=(x_n,y_n)$ [/mm] gilt (nachrechnen)
[mm] $$\frac{xy}{x^2+y^2}=\ldots=1/2$$ [/mm]
und damit...

P.S.
Wäre [mm] $f\,$ [/mm] wirklich stetig (in [mm] $(0,0)\,$) [/mm] gewesen, dann hättest Du am besten nach einer Abschätzung für die [mm] $e\,$-Funktion [/mm] gesucht. Oft hilft dabei auch schon die Reihenentwicklung (die man dann ggf. auch mal abbrechen läßt).

P.P.S.
Witzig wäre es hier auch, mal die "entsprechende in Polarkoordinaten transformierte Funktion zu betrachten":
Setze also mal an [mm] $x=x(r,\alpha)=r*\cos(\alpha)$ [/mm] und [mm] $y=y(r,\alpha)=r*\sin(\alpha)\,.$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de