www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:57 Mo 03.10.2005
Autor: noire

Hallo,
ich hab da ein riesieges Problem. Ich befinde mich zur Zeit im Ausland und muss morgen eine Aufgabe an der Tafel rechnen. Habe aber keine Ahnung, wie ich anfangen soll. Mir fehlt der Ansatz und eine Idee. Bitte helft mir...
Ich hab eine lineare Abbildung u auf den R hoch n in der A E R hoch n als Matrix definiert ist. Wie kann ich zeigen, dass diese Abbildung stetig ist? Als Hilfe wurde uns gesagt, wir sollen es mit der unendlich Norm versuchen. ????????
Wie soll ich eben diese Norm der Matrix dann angeben?

Eine weitere Aufgabe ist, dass ich zeigen soll, dass ein Integral linear stetig ist.
Ich tu mich schon mit der Sprache sehr schwer.
Es ware echt sehr hiflreich, wenn ich nen Tipp bekommen wuerde. Mir fehlt echt jegliche Idee.
DANKE



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Mo 03.10.2005
Autor: Leopold_Gast

Es sei

[mm]f: \ \ \mathbb{R}^n \to \mathbb{R}^m \, , \ \ x \mapsto Ax[/mm]

eine lineare Abbildung mit [mm]A = (a_{ij})[/mm] als zugehöriger [mm]m[/mm]×[mm]n[/mm]-Matrix und [mm]x[/mm] als [mm]n[/mm]-reihiger Spalte. Dann zeigt die Abschätzung

[mm]\left\| Ax \right\| \leq n \left\| A \right\| \left\| x \right\|[/mm]

worin die Doppelstriche die Unendlich-Norm bezeichnen mögen, das Gewünschte. Für das [mm]i[/mm]-te Element der Spalte [mm]Ax[/mm] gilt nämlich:

[mm]\left| \sum_{j}~a_{ij} x_j \right| \ \leq \ \sum_{j}~\left| a_{ij} \right| \left| x_j \right| \ \leq \ \left\| A \right\| \sum_{j}~\left| x_j \right| \ \leq \ n \left\| A \right \| \left\| x \right \|[/mm]

Also muß auch das Maximum der linken Seite, erstreckt über alle [mm]i[/mm], die Ungleichung erfüllen:

[mm]\left\| Ax \right\| \leq n \left\| A \right\| \left\| x \right\|[/mm]

Bezug
        
Bezug
Stetigkeit: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Mo 03.10.2005
Autor: noire

Wollte mich nur bedanken. Vielen Dank fuer die schnelle Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de