www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit, Differenzierbarkei
Stetigkeit, Differenzierbarkei < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Differenzierbarkei: Aufgabenkorrektur notwendig
Status: (Frage) überfällig Status 
Datum: 11:25 Mi 10.03.2021
Autor: Floidoi

Aufgabe
In den Abbildungen am Rand sind die Graphen zweier Funktionen f und g gegeben. Geben Sie an, an welchen Stellen die Funktionen stetig sind. An welchen Stellen sind sie sogar differenzierbar?



Hallo...ich habe mich hier an drei Aufgaben, bei denen es um Stetigkeit und Differenzierbarkeit geht, versucht .Ich bitte daher um Verbesserungen und Tipps ....Danke im Voraus

[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Stetigkeit, Differenzierbarkei: Aufgaben Lösungsansatz
Status: (Frage) für Interessierte Status 
Datum: 11:36 Mi 10.03.2021
Autor: Floidoi

Hallo, ich habe mich an drei Aufgaben zur Stetigkeit und Differenzierbarkeit versucht, aber komme bei manchen Sachen nicht weiter...deshalb brauche ich Tipps oder auch Lösungsansätze.....Danke im Voraus

[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Stetigkeit, Differenzierbarkei: Aufgaben 1-3
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:23 Mi 10.03.2021
Autor: Floidoi

Aufgabe
In den Abbildungen am Rand sind die Graphen zweier Funktionen f und g gegeben. Geben Sie an, an welchen Stellen die Funktionen stetig sind. An welchen Stellen sind sie sogar differenzierbar?


Hallo, ich habe mich an drei Aufgaben über die Stetigkeit und Differenzierbarkeit versucht und komme bei manchen nicht weiter oder bin mir nicht sicher...daher brauche ich Tipps etc. ...Danke im Voraus!

[Dateianhang nicht öffentlich]

[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Stetigkeit, Differenzierbarkei: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Sa 20.03.2021
Autor: HJKweseleit

1. Bild links: In ]1|2[ auch noch diffbar.
   Bild rechts: In 0 nicht stetig und nicht diffbar, falls 0 überhaupt zum Def.-Bereich gehört. Dort ist nämlich die Fkt. nicht definiert. Im Def.-Bereich [mm] ]-\infty|0[ \cup ]0|\infty[ [/mm] ist die Fkt. überall stetig und diffbar.

3. b) Knickstelle ist keine Sprungstelle. In einer Sprungstelle ist der Graph nicht stetig und daher auch nicht diffbar, da hast du recht.

2. Stell dir vor, am nächsten Tag geht ein zweiter Wanderer genau den selben Weg zu genau der selben Zeit mit genau den selben Geschwindigkeiten nach oben, wie unser Freund am ersten Tag, so dass er immer zur selben Zeit auf gleicher Höhe wie unser Freund am Vortag ist. Dann begegnen sich heute beide irgendwo zur selben Zeit auf der selben Höhe. Selbst wenn unser Freund 1 m vor der Begegnung am zweiten Wanderer vorbei in die Tiefe springen würde, würde er doch für einen Moment mit dem gleichzeitig auf gleicher Höhe sein. Körperbewegungen sind stetig, keiner kann ohne Zeitintervall auf einmal 3 m tiefer als vorher sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de