www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Stetigkeit Differenzierbarkeit
Stetigkeit Differenzierbarkeit < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 25.10.2005
Autor: thomasXS

Hallo,

ich habe folgende Aufgabe:


[mm] f(x)=\begin{cases} x^2+6x+3, & \mbox{für } x \mbox{ < -3} \\ & \bruch{1}{9}x^3 + 3x\mbox{ für } x \mbox{>= -3} \end{cases} [/mm]

Nun möchte ich die 1.)Stetigkeit, 2.)Ableitung der Teilfunktion und den
3.) Grenzwert der Steigung bestimmen.

zu 1.) Stetigkeit:

lim x->  [mm] (x^2+6x+3)=0 [/mm]

[mm]lim x-> ( \bruch{-1}{9}x^3+3x)[/mm]

Hier weiss ich auch nicht den x-wert. Wenn ich -3 einsetze erhalte ich -6 für beide f(x)

Wer kann mir helfen und sagen, wie ich den x-Wert bekomme?

Danke im voraus

Fabian

jetzt habe ich gleich ein Problem, der wert für x muss doch 0 ergeben, oder nicht? Wie kann ich jetzt diesen x-wert bestimmen?

        
Bezug
Stetigkeit Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Di 25.10.2005
Autor: Andre

hi thomas,

um die stetigkeit zu beweisen, musst du gucken ob  [mm] \limes_{h\rightarrow\0} f_{(a+h)}=f_{a} [/mm] ist. ( je für für h<0 und h>0) wenn das stimmt ist f stetig

bei dieser aufgabe musst das für a= -3 überprüfen.

du musst alsol für x -3 einsetzten und gucken ob [mm] \limes_{h\rightarrow\0} f_{(-3+h)}=f_{({-3})} [/mm] ist. ( hier reicht es den fall  [mm] \limes_{h\rightarrow\0} [/mm] für h<0 zu betrachten)

Bezug
        
Bezug
Stetigkeit Differenzierbarkeit: Mathebank!
Status: (Antwort) fertig Status 
Datum: 08:44 Mi 26.10.2005
Autor: informix

Hallo Fabian,
>  
> ich habe folgende Aufgabe:
> [mm]f(x)=\begin{cases} x^2+6x+3, & \mbox{für } x \mbox{ < -3} \\ & \bruch{1}{9}x^3 + 3x\mbox{ für } x \mbox{>= -3} \end{cases}[/mm]
>  
> Nun möchte ich die 1.)Stetigkeit, 2.)Ableitung der
> Teilfunktion und den
>  3.) Grenzwert der Steigung bestimmen.
>  
> zu 1.) Stetigkeit:
>  
> lim x->  [mm](x^2+6x+3)=0[/mm]

>  
> [mm]lim x-> ( \bruch{-1}{9}x^3+3x)[/mm]
>  
> Hier weiss ich auch nicht den x-wert. Wenn ich -3 einsetze
> erhalte ich -6 für beide f(x)
>  

[guckstduhier] MBstetig in unserer MBMatheBank.

Du musst also untersuchen, ob
[mm] $\limes_{x \rightarrow -3}x^2+6x+3 [/mm] = 9 + (-18) + 3$ für x<-3 übereinstimmt mit
[mm] $\limes_{x \rightarrow -3}\bruch{-1}{9}x^3 [/mm] + 3x = -27 +3*(-3)$ für x [mm] \ge [/mm] -3.

bei der Differenzierbarkeit geht es grundsätzlich entsprechend mit den Steigungen von links und rechts.

Jetzt klar(er)?

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de