www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Stetigkeit,Differenzierbarkeit
Stetigkeit,Differenzierbarkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit,Differenzierbarkeit: Frage, Hilfe
Status: (Frage) beantwortet Status 
Datum: 20:43 Mo 31.01.2011
Autor: sanane

also von folgende funktion sollten wir auf stetigkeit in (0,0) überprüfen:

f (x,y) =   ( [mm] \wurzel{|xy|} [/mm] ) / [mm] (x^2) [/mm] + [mm] (y^2) [/mm]   wenn (x,y) ungleich (0,0)
                                                                 0   wenn (x,y) = (0,0)

okay also um die stetigkeit oder unstetgkeit in (0,0) zu überprüfen habe ich die nullfolge in ( 1/n , [mm] (1/(n^2)) [/mm] betrachtet:

[mm] \limes_{n\rightarrow\infty} [/mm] f (1/n  , (1 / [mm] (n^2)) [/mm]

= ( [mm] \wurzel{| (1/n)* (1/(n^2))|} [/mm] ) / [mm] (1/n)^2 [/mm] +( 1 / [mm] (n^2))^2) [/mm]  = 0/0 = 0

somit müsste die funktion stetig in (0,0) sein.

Wäre das so richtig, wenn nicht wie müsste ich sonst vorgehen ?
Dann habe ich noch eine Frage und zwar geht man bei stetigkeit in einem punkt immer so vor, dass man die Nullfolge betrachtet ?

        
Bezug
Stetigkeit,Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Di 01.02.2011
Autor: statler

Guten Morgen erstmal!

> also von folgende funktion sollten wir auf stetigkeit in
> (0,0) überprüfen:
>  
> f (x,y) =   ( [mm]\wurzel{|xy|}[/mm] ) / [mm](x^2)[/mm] + [mm](y^2)[/mm]   wenn (x,y)
> ungleich (0,0)
>                                                            
>       0   wenn (x,y) = (0,0)
>  
> okay also um die stetigkeit oder unstetgkeit in (0,0) zu
> überprüfen habe ich die nullfolge in ( 1/n , [mm](1/(n^2))[/mm]
> betrachtet:
>  
> [mm]\limes_{n\rightarrow\infty}[/mm] f (1/n  , (1 / [mm](n^2))[/mm]
>  
> = ( [mm]\wurzel{| (1/n)* (1/(n^2))|}[/mm] ) / [mm](1/n)^2[/mm] +( 1 /
> [mm](n^2))^2)[/mm]  = 0/0 = 0
>  
> somit müsste die funktion stetig in (0,0) sein.
>  
> Wäre das so richtig, wenn nicht wie müsste ich sonst
> vorgehen ?

Das ist geradezu erschreckend falsch. Erstens besagt das Folgenkriterium, daß es für alle Folgen gelten muß, nicht nur für eine spezielle, und zweitens gibt es 0/0 nicht. Wenn MLS Mathe für Lehramt bedeutet, macht mir das Sorgen,  weil man bereits in der Schule lernt, daß man durch 0 nicht teilen kann.

> Dann habe ich noch eine Frage und zwar geht man bei stetigkeit in
> einem punkt immer so vor, dass man die Nullfolge betrachtet ?

Ganz und gar nicht!

Hier ist also ein neuer Anlauf nötig.

Gruß aus HH-Harburg
Dieter


Bezug
        
Bezug
Stetigkeit,Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Di 01.02.2011
Autor: fred97

Für x>0 betrachte f(x,x), was passiert für x [mm] \to [/mm] 0 ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de