www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit Grenzfunktion
Stetigkeit Grenzfunktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Mi 17.02.2010
Autor: Napkin

Wenn die Grenzfunktion einer Reihe nicht stetig ist, kann ich daraus schliessen, dass die Reihe nicht gleichmässig konvergiert.

Wenn die Grenzfunktion einer Reihe stetig ist, kann ich daraus nicht schliessen, dass die Reihe gleichmässig konvergiert.

Stimmt das so ?

        
Bezug
Stetigkeit Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mi 17.02.2010
Autor: fred97


> Wenn die Grenzfunktion einer Reihe nicht stetig ist, kann
> ich daraus schliessen, dass die Reihe nicht gleichmässig
> konvergiert.


Wenn die Reihenglieder stetige Funktionen sind, liegst Du richtig


>  
> Wenn die Grenzfunktion einer Reihe stetig ist, kann ich
> daraus nicht schliessen, dass die Reihe gleichmässig
> konvergiert.

Nein , das kannst Du nicht. Hast Du Beispiele ?

FRED

>  
> Stimmt das so ?


Bezug
                
Bezug
Stetigkeit Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 17.02.2010
Autor: Napkin

Wenn die Grenzfunktion einer Reihe stetig ist, kann ich
daraus nicht schliessen, dass die Reihe gleichmässig
konvergiert.


Hast du das nicht auch gelesen?,

ich dachte nämlich bisher immer man kann aus der Stetigkeit der Grenzfunktion schliessen, dass die Reihe gleichmässig stetig ist.

Bis mein Professor mich eines besseren belehrte, ich bin daher immoment ein wenig unsicher.

Dass aus einer Grenzfunktion die nicht stetig ist folgt, dass die Reihe nicht gleichmässig konvergiert weiss ich.

Ich bin mir nicht sicher ob man aus der Stetigkeit der Grenzfunktion schliessen kann ob die Reihe dann gleichmässig stetig ist oder ob dieser Schluss falsch ist.


Bezug
                        
Bezug
Stetigkeit Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Mi 17.02.2010
Autor: fred97


> Wenn die Grenzfunktion einer Reihe stetig ist, kann ich
>  daraus nicht schliessen, dass die Reihe gleichmässig
>  konvergiert.
>  
> Hast du das nicht auch gelesen?,

Doch hab ich, warum fragst Du ?


>  
> ich dachte nämlich bisher immer man kann aus der
> Stetigkeit der Grenzfunktion schliessen, dass die Reihe
> gleichmässig stetig ist.
>  
> Bis mein Professor mich eines besseren belehrte, ich bin
> daher immoment ein wenig unsicher.
>  
> Dass aus einer Grenzfunktion die nicht stetig ist folgt,
> dass die Reihe nicht gleichmässig konvergiert weiss ich.
>  
> Ich bin mir nicht sicher ob man aus der Stetigkeit der
> Grenzfunktion schliessen kann ob die Reihe dann
> gleichmässig stetig ist oder ob dieser Schluss falsch


Nimm die Reihe [mm] \summe_{n=0}^{\infty}x^n. [/mm] Diese Reihe konvergiert auf (-1,1) punktweise, aber nicht gleichmäßig, gegen die stetige Funktion [mm] \bruch{1}{1-x} [/mm]

FRED

> ist.
>  


Bezug
                                
Bezug
Stetigkeit Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 17.02.2010
Autor: Napkin

Ok also liege ich richtig damit, dass sich aus der Aussage "die Grenzfunktion ist stetig" nichts folgern lässt, bzw keine Aussage über die gleichmässige Konvergenz der Reihe ausgesagt werden kann, wenn die Grenzfunktion stetig ist.

Bezug
                                        
Bezug
Stetigkeit Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:38 Do 18.02.2010
Autor: pelzig


> Ok also liege ich richtig damit, dass sich aus der Aussage
> "die Grenzfunktion ist stetig" nichts folgern lässt, bzw
> keine Aussage über die gleichmässige Konvergenz der Reihe
> ausgesagt werden kann, wenn die Grenzfunktion stetig ist.

Ja, das ist richtig.

Das Beispiel mit der geometrischen Reihe ist richtig, sobald man aber das Intervall nur ein kleines bischen kleiner macht wird die Konvergenz gleichmäßig. Ein anderes sehr schönes Beispiel ist folgedes: Betrachte die Funktionenfolge [mm] $f_n:\IR\to\IR$ [/mm] mit [mm] $$f_n(x):=\begin{cases}x-n+1&x\in[n-1,n]\\n-x+1&x\in[n,n+1]\\0&\text{sonst}\end{cases}$$ [/mm] Der Graph von [mm] $f_n$ [/mm] ist einfach nur eine Zacke bei $n$ der Breite 2 und Höhe 1, sonst ist die Funktion gleich Null. Dann sieht man leicht dass [mm] $f_n$ [/mm] punktweise gegen die (stetige!) Nullfunktion konvergiert, aber nicht gleichmäßig, da [mm] $\|f_n-0\|_\infty=1$ [/mm] für alle [mm] $n\in\IN$. [/mm]

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de