www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit Polynomfunktion
Stetigkeit Polynomfunktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Polynomfunktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:43 Mo 20.02.2006
Autor: cucho

Aufgabe
Zeige, mit  [mm] \varepsilon [/mm] -  [mm] \delta [/mm] , dass [mm] x^3 [/mm] stetig ist.

Hallo,

ich will aus Eigeninteresse zeigen, dass [mm] x^3 [/mm] stetig ist, ohne den Satz für Polynomfunktionen zu benutzen.

Es gilt also zu zeigen, dass [mm] \forall [/mm] a [mm] \in [/mm] D [mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x [mm] \in [/mm] D : | x - a | < [mm] \delta \Rightarrow [/mm] | [mm] x^3 [/mm] - [mm] a^3 [/mm] | [mm] \varepsilon [/mm]

Ok, wir haben

| [mm] x^3 [/mm] - [mm] a^3 [/mm] | = | (x-a) [mm] (x^2 [/mm] + ax + [mm] a^2) [/mm] | = | (x-a) ( [mm] (x+a)^2 [/mm] - ax) |

Was kann ich denn hier genau abschätzen. Ich hänge hier fest.

Funktioniert das hier:

| [mm] x^2 [/mm] + ax + [mm] a^2 [/mm] | > | ax + [mm] a^2 [/mm] | [mm] \ge [/mm] | a | | x + [mm] a^2 [/mm] |

[mm] \Rightarrow [/mm]

[mm] \bruch{1}{|x^2+ax+a^2|} [/mm] < [mm] \bruch{1}{|ax+a^2|} \le \bruch{1}{|a||x+a^2|} [/mm]

Wie bekomme ich das x hier am Besten weg?

Gilt das hier:

[mm] \bruch{1}{|a||x+a^2|} \le \bruch{1}{|a||a+a^2|} [/mm]  ???????

Gruß


        
Bezug
Stetigkeit Polynomfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:47 Di 21.02.2006
Autor: mathiash

Hallo und guten Morgen,

probieren wir es doch mal, und zwar mit einer mir persönlich etwas angenehmeren Schreibweise:


[mm] |(x+\delta)^3-x^3| \:\: [/mm] = [mm] \:\:| x^3 \: +\: [/mm]  3 [mm] x^2\cdot\delta\: +\: [/mm] 3 [mm] x\cdot \delta^2\: +\: \delta^3\:\: -x^3| [/mm]
                
                                 [mm] \leq \:\: |\delta \cdot \: 3x^2|\:\: +\:\: |\:3x\cdot\delta\:|\:\: +\:\: |\delta^2| [/mm]

und  jetzt sieht man doch schon, wie man [mm] \delta [/mm] wählen muß, um die rechte Seite kleiner einem gegebenen [mm] \epsilon [/mm]
zu bekommen:

Wähle  [mm] \delta [/mm] so, dass

jeder dieser drei Summanden auf der rechten Seite kleiner als [mm] \epsilon\slash [/mm] 3 wird.

Klar soweit ?


Viele Grüße,

Mathias

Bezug
                
Bezug
Stetigkeit Polynomfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Di 21.02.2006
Autor: cucho

Aufgabe
Hallo Mathias

Ich weiß nicht, ob ich Recht habe. Aber ich glaube du hast ein [mm] \delta [/mm] unterschlagen. Ich sehe nicht wo es hin ist. Es müsste doch heißen,

|3 [mm] x^2 \delta| [/mm] + |3 x [mm] \delta^2| [/mm] + [mm] |\delta^3| [/mm]

Oder?

Dann muss ich mein [mm] \delta [/mm] also wie folgt wählen

[mm] \delta [/mm] := [mm] \bruch{\min{ \bruch{\varepsilon}{|3 x^3|}, \wurzel{\bruch{\varepsilon}{|3x|}},\wurzel[3]{\varepsilon} } }{3} [/mm]

Ne kurze Bestätigung reicht mir aus.

Schöne Grüße und danke für den Trick. Ist echt prima.

Sebastian

Bezug
                        
Bezug
Stetigkeit Polynomfunktion: Kleine Biester
Status: (Antwort) fertig Status 
Datum: 08:42 Mi 22.02.2006
Autor: mathiash

Hallo,

ja, Du hast recht. Also Deine Wahl stimmt, und allgemein gilt:

Mit den [mm] \delta [/mm] ' s muss man verdammt aufpassen, sonst entwischen sie einem sofort.

Sind halt ziemlich klein, die Biester !


Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de