Stetigkeit, beschränkte Fkt. < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:18 Sa 03.12.2011 | Autor: | Lustique |
Aufgabe | a) Es sei [mm] $u\colon \mathbb{R}\setminus\left\{0\right\}\to\mathbb{R}$ [/mm] eine beschränkte Funktion. Beweisen Sie, dass die Funktion [mm] $v\colon \mathbb{R}\to\mathbb{R}$, [/mm] welche durch [mm] $v\left(x\right)=xu(x)$ [/mm] für [mm] $x\neq [/mm] 0$ und $v(0) := 0$ definiert ist, in $a=0$ stetig ist.
b) Untersuchen Sie die folgenden Funktionen in jedem Punkt $a$ des Definitionsbereichs auf Stetigkeit in $a$ (mit Begründung!) und skizzieren Sie den Funktionsgraph:
(i) ... (irrelevant)
(ii) [mm] $g\colon \mathbb{R}\to\mathbb{R}, \qquad g(x)=\left\lvert \left\lfloor x+ \frac{1}{2} \right\rfloor - x \right\rvert$
[/mm]
(iii) [mm] $h\colon \mathbb{R}\to\mathbb{R}, \qquad [/mm] h(x)= [mm] \begin{cases} xg(\frac{1}{x}) & \text{falls $x\neq0$} \\ 0 & \text{falls $x=0$} \end{cases}
[/mm]
Hinweis zu iii): $g$ bezeichnet sie Funktion aus ii). Verwenden Sie Teil a). |
Hallo,
ich habe ein Problem mit der Teilaufgabe (iii), den Rest habe ich schon, zumindest hoffe ich das.
(ich glaube zwar, dass es für den Nachweis der Stetigkeit von $h$ aus (iii) irrelevant ist, aber bei mir ist $g$ von (ii) stetig.)
Als ich mir die Funktion $g$ aus (ii) anguckt und (hoffentlich) deren Stetigkeit bewiesen habe, habe ich gesehen/gezeigt, dass die Funktion im Intervall [mm] $\textstyle I=\left[0,\frac{1}{2}\right]$ [/mm] liegt, und zwar mit [mm] $\textstyle g(z)=\frac{1}{2}$ [/mm] für [mm] $z\in\mathbb{Z}$, $\textstyle [/mm] g(z+0,5)=0$ und den reellen Zahlen dazwischen, die diese Punkte, sozusagen, im Zickzack verbinden. Plot
In (iii) ist aber nun von [mm] $\textstyle g(\frac{1}{x})$ [/mm] die Rede. Wenn man sich den GraphenEingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
dazu anschaut, dann sieht man, dass diese Funktion ebenfalls durch 0 und 0.5 beschränkt ist. Irgendwie ist das ja auch logisch, da man ja praktisch den Wertebereich der Funktion nicht verändert hat, oder? (Stimmt das so weit?) Ich würde zwar sehr viel lieber die Beschränkheit dieser Funktion nachweisen, aber das bekomme ich irgendwie nur für $x>0$ hin:
$\textstyle g(\frac{1}{x})=\left\lvert\left\lfloor\frac{1}{x}+\frac{1}{2}\right\rfloor-\frac{1}{x}\right\rvert$
für x>0:
$\textstyle \left\lvert\left\lfloor\frac{1}{x}+\frac{1}{2}\right\rfloor-\frac{1}{x}\right\rvert\leqslant \left\lvert\frac{1}{x}+\frac{1}{2}-\frac{1}{x}\right\rvert=\frac{1}{2}$, da ja $\left\lfloor x\right\rfloor := \max \left\{ n\in\mathbb{Z}:n\leqslant x\left\}$
Soweit so gut, aber wie komme ich da mit x<0 weiter? Es müsste ja eigentlich dann $\textstyle -\frac{1}{2}$ sein (also innerhalb der Betragsstriche), oder?
Und wie kann ich jetzt den Teil a) nutzen? Bis jetzt habe ich Folgendes:
Sei $\phi\colon \mathbb{R}\setminus\{0\}\to\mathbb{R}$, $\textstyle \phi (x) = \frac{1}{x}$ und $u\colon \mathbb{R}\setminus\{0\}\to\mathbb{R}$ mit $\textstyle u(x) = \left(g\circ \phi\right)(x)=g(\phi(x))=g(\frac{1}{x})$.
Es folgt $\textstyle x\cdot g(\frac{1}{x})=x\cdot u(x)$. Nun folgt direkt aus a) die Stetigkeit der Funktion $h$.
Das darf ich wahrscheinlich so nicht machen, oder?
Könnt ihr hier vielleicht mal drübergucken und mir dann schreiben, was falsch ist und Tipps geben, wie es richtig geht? Wenn ich meine Lösungen zu den anderen Teilaufgaben noch posten soll, dann sagt Bescheid. Ich habe das jetzt nur nicht getan, weil der Beitrag sonst wirklich ellenlang geworden wäre...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:58 Sa 03.12.2011 | Autor: | leduart |
Hallo
der einzige fehler den du machst ist das mit "es muss -1/2 in den Betragsstrichen heissen."
probier es doch aus! etwa für x zwischen 0 und -1
x=-1/3 [mm] g(x)=\left\lvert \left\lfloor -3+ \frac{1}{2} \right\rfloor - x \right\rvert=3-3=0 [/mm]
du hast also in der nähe von 0 dieselbe funktion wie für grosse negative x in g(x= also beschränkt. mit den schranken von g(x)
im übrigen überall stetig als Komposition stetiger fkt. Jetzt musst du nur den GW bei 0 von links und rechts machen.Und da sagt dir a= das Ergebnis. d.h. du musst gar nichts tun, ausser a) zitieren.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:49 Di 06.12.2011 | Autor: | Lustique |
> Hallo
> der einzige fehler den du machst ist das mit "es muss -1/2
> in den Betragsstrichen heissen."
> probier es doch aus! etwa für x zwischen 0 und -1
> x=-1/3 [mm]g(x)=\left\lvert \left\lfloor -3+ \frac{1}{2} \right\rfloor - x \right\rvert=3-3=0[/mm]
>
> du hast also in der nähe von 0 dieselbe funktion wie für
> grosse negative x in g(x= also beschränkt. mit den
> schranken von g(x)
> im übrigen überall stetig als Komposition stetiger fkt.
> Jetzt musst du nur den GW bei 0 von links und rechts
> machen.Und da sagt dir a= das Ergebnis. d.h. du musst gar
> nichts tun, ausser a) zitieren.
> Gruss leduart
Danke erst mal leduart! Tut mir Leid, dass ich erst jetzt reagiere, aber ich war noch mit den anderen Aufgaben des Zettels gut beschäftigt... :D
Also bis auf meine Abschätzung ist das Ganze in Ordnung so? Diese Definition von $u(x)$ ist also legitim? Oder ist die sogar überflüssig? Ich habe jetzt auch mal in meiner Lösung einfach die Beschränktheit von [mm] $g\left(\frac{1}{x}\right)$ [/mm] vorausgesetzt, da ja [mm] $g(x)\leqslant \frac{1}{2}$ [/mm] für alle x gilt, also auch für (absolut) sehr große und (absolut) sehr kleine, was ja mehr oder weniger dem entspricht, was du mir geschrieben hast, oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:05 Mi 07.12.2011 | Autor: | leduart |
Hallo
ih denk du bist fertig
Gruss leduart
|
|
|
|