www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit der Funktionen
Stetigkeit der Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit der Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mo 03.05.2010
Autor: johnyan

Aufgabe
[mm] f(x,y)=\begin{cases} \bruch{x^2+y^2}{3}+4, & \mbox{für } (x,y)\not=(0,3) \mbox{ } \\ 7, & \mbox{für } (x,y)=(0,3) \end{cases} [/mm]

[mm] h(x,y)=\begin{cases} \bruch{x^3-x*y^2}{x^2+y^2}, & \mbox{für } (x,y)\not=(0,0) \mbox{ } \\ 0, & \mbox{für } (x,y)=(0,0) \end{cases} [/mm]

zu f(x,y):
ich denke, dass die funktion stetig auf ganz [mm] \IR^2 [/mm] ist. beweisen sollte man ja mit allgemeinen folgen wie zb [mm] a_n=(a_1_n, a_2_n), [/mm] wobei [mm] \limes_{n\rightarrow\infty} a_n=(0,3). [/mm] kann ich dann einfach einsetzen und sagen, dass [mm] f(a_n)=\bruch{0^2+3^2}{3}+4=7, [/mm] und somit stetig?

zu h(x,y):
ich glaube, dass die funktion nicht stetig ist, aber ein gegenbeispiel hab ich leider noch nicht gefunden.

        
Bezug
Stetigkeit der Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 03.05.2010
Autor: schachuzipus

Hallo John,

> [mm]f(x,y)=\begin{cases} \bruch{x^2+y^2}{3}+4, & \mbox{für } (x,y)\not=(0,3) \mbox{ } \\ 7, & \mbox{für } (x,y)=(0,3) \end{cases}[/mm]
>  
> [mm]h(x,y)=\begin{cases} \bruch{x^3-x*y^2}{x^2+y^2}, & \mbox{für } (x,y)\not=(0,0) \mbox{ } \\ 0, & \mbox{für } (x,y)=(0,0) \end{cases}[/mm]
>  
> zu f(x,y):
>  ich denke, dass die funktion stetig auf ganz [mm]\IR^2[/mm] ist. [ok]
> beweisen sollte man ja mit allgemeinen folgen wie zb
> [mm]a_n=(a_1_n, a_2_n),[/mm] wobei [mm]\limes_{n\rightarrow\infty} a_n=(0,3).[/mm]
> kann ich dann einfach einsetzen und sagen, dass
> [mm]f(a_n)=\bruch{0^2+3^2}{3}+4=7,[/mm] und somit stetig? [ok]
>  
> zu h(x,y):
>  ich glaube, dass die funktion nicht stetig ist, aber ein
> gegenbeispiel hab ich leider noch nicht gefunden.

M.E. ist das Ding stetig.

Außerhalb von 0 sowieso als Komposition stetiger Funktionen.

Für den Stetigkeitsnachweis in $(0,0)$ würde ich zu Polarkoordinaten übergehen:

[mm] $x=r\cdot{}\cos(\varphi), y=r\cdot{}\sin(\varphi)$ [/mm] mit [mm] $r\ge [/mm] 0, [mm] \varphi\in (0,2\pi]$ [/mm]

Das einsetzen und schauen, ob [mm] $\lim\limits_{r\to 0}f(r,\varphi)=0$ [/mm] unabh. vom Winkel [mm] $\varphi$ [/mm] ist.

Alternativ lässst sich auch [mm] $|f(x,y)-f(0,0)|=\left|\frac{x^3-xy^2}{x^2+y^2}-0\right|=|x|\cdot{}\frac{\left|x^2-y^2|}{x^2+y^2}$ [/mm] ganz gut abschätzen ...


Gruß

schachuzipus

Bezug
                
Bezug
Stetigkeit der Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mo 03.05.2010
Autor: johnyan

danke schon mal für die antwort!

wie schätze ich das denn ab?

$ [mm] |f(x,y)-f(0,0)|=\left|\frac{x^3-xy^2}{x^2+y^2}-0\right|=|x|\cdot{}\frac{\left|x^2-y^2|}{x^2+y^2} [/mm] $

etwa so?

0 [mm] \le |x|\cdot{}\frac{\left|x^2-y^2|}{x^2+y^2}\le|x|\cdot{}\frac{\left x^2+y^2}{x^2+y^2}=|x| \to [/mm] 0

und deshalb ist dann [mm] \limes_{(x,y)\rightarrow(0,0)} \bruch{x^3-x\cdot{}y^2}{x^2+y^2}=0 [/mm] und somit auf ganz [mm] \IR^2 [/mm] stetig?

Bezug
                        
Bezug
Stetigkeit der Funktionen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 03.05.2010
Autor: Loddar

Hallo johnyan!


> 0 [mm]\le |x|\cdot{}\frac{\left|x^2-y^2|}{x^2+y^2}\le|x|\cdot{}\frac{\left x^2+y^2}{x^2+y^2}=|x| \to[/mm] 0

[ok] Allerdings solltest Du m.E. die eine Abschätzung im Zähler noch etwas genauer begründen.

  

> und deshalb ist dann [mm]\limes_{(x,y)\rightarrow(0,0)} \bruch{x^3-x\cdot{}y^2}{x^2+y^2}=0[/mm] und somit auf ganz [mm]\IR^2[/mm] stetig?

[ok]


Gruß
Loddar


Bezug
                                
Bezug
Stetigkeit der Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Mo 03.05.2010
Autor: johnyan

also noch dazu schreiben, dass [mm] x^2 [/mm] und [mm] y^2 [/mm] immer positiv sind und deshalb ihre summen immer größer oder gleich ihre differenz ist?

Bezug
                                        
Bezug
Stetigkeit der Funktionen: geht auch so
Status: (Antwort) fertig Status 
Datum: 23:56 Mo 03.05.2010
Autor: Loddar

Hallo johnyan!


> also noch dazu schreiben, dass [mm]x^2[/mm] und [mm]y^2[/mm] immer positiv
> sind und deshalb ihre summen immer größer oder gleich ihre differenz ist?

Zum Beispiel ... ich hatte eher an die Dreiecksungleichung gedacht.


Gruß
Loddar


Bezug
                                                
Bezug
Stetigkeit der Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:58 Mo 03.05.2010
Autor: johnyan

joa, ich hab auch die dreiecksungleichung benutzt, allerdings wusste ich nicht so genau, wie ich die dreiecksungleichung begründen sollte, naja, vielleicht einfach nur dazu schreiben, das gilt wegen der dreiecksungleichung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de