www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit f^-1
Stetigkeit f^-1 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit f^-1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:26 So 03.04.2011
Autor: Nadia..

Aufgabe
Es sei $X,Y$ metrischer Räume und $f:X [mm] \to [/mm] Y$ eine stetige und bijektive Abbildung.
Zeigen Sie, dass die Umkehrabbildung [mm] $f^{-1}$ [/mm] stetig ist, falls  Kompakt ist.

Meine Idee:

das Bild f(K) jeder kompakten Menge $K [mm] \subset [/mm] X $ist kompakt in Y .
Das Bild ist Kompakt, also auch abgeschlossen.
Z.z ist [mm] $y_n \to y_0 \Rightarrow f^{-1}(y_n) \to f^{-1} y_0 [/mm] $
Da das Bild Y Kompakt ist, existieren solche Folgen  [mm] $y_n \to y_0 [/mm] $

Nun da f stetig ist, gilt:
[mm] $x_n\to x_0 \Rightarrow f(x_n) \to f(x_0)$ [/mm] wegen f bijektiv folgt für [mm] $y_n \to y_0 \Rightarrow [/mm] $ [mm] $(f^{-1}(f(x_n)=y_n)=x_n) \to (f^{-1}(f(x_0)=y_0)=x_0) [/mm] $


Freue mich auf jede Hilfe von euch.


Lg


Nadia


        
Bezug
Stetigkeit f^-1: Antwort
Status: (Antwort) fertig Status 
Datum: 01:18 Mo 04.04.2011
Autor: Marcel

Hallo Nadia,

> Es sei [mm]X,Y[/mm] metrischer Räume und [mm]f:X \to Y[/mm] eine stetige und
> bijektive Abbildung.
>  Zeigen Sie, dass die Umkehrabbildung [mm]f^{-1}[/mm] stetig ist,
> falls  Kompakt ist.
>  Meine Idee:
>  
> das Bild f(K) jeder kompakten Menge [mm]K \subset X [/mm]ist kompakt
> in Y .
>  Das Bild ist Kompakt, also auch abgeschlossen.
>  Z.z ist [mm]y_n \to y_0 \Rightarrow f^{-1}(y_n) \to f^{-1} y_0[/mm]
>  
> Da das Bild Y Kompakt ist, existieren solche Folgen  [mm]y_n \to y_0[/mm]
>  
> Nun da f stetig ist, gilt:
>  [mm]x_n\to x_0 \Rightarrow f(x_n) \to f(x_0)[/mm] wegen f bijektiv
> folgt für [mm]y_n \to y_0 \Rightarrow[/mm] [mm](f^{-1}(f(x_n)=y_n)=x_n) \to (f^{-1}(f(x_0)=y_0)=x_0)[/mm]
>  
>
> Freue mich auf jede Hilfe von euch.
>  
>
> Lg
>  
>
> Nadia

Du musst schon genauer schreiben, was Du da machst:
Zu zeigen ist: Ist [mm] $(y_n)_n$ [/mm] eine Folge in [mm] $Y\,$ [/mm] mit [mm] $y_n \to y_0 \in Y\,,$ [/mm] so gilt auch [mm] $f^{-1}(y_n) \to f^{-1}(y_0)\,.$ [/mm]

Das ergibt sich so:
Mit [mm] $x_n:=f^{-1}(y_n)$ [/mm] (für alle [mm] $n\,$) [/mm] ist (wegen der Bijektivität) eine Folge [mm] $(x_n)_n$ [/mm] in [mm] $X\,$ [/mm] gegeben. Es ist nun erstmal keineswegs klar, dass diese Folge [mm] $(x_n)_n$ [/mm] konvergiert. Wegen der Kompaktheit von [mm] $X\,$ [/mm] gibt es aber eine konvergente Teilfolge [mm] $(x_{n_k})_k$ [/mm] von [mm] $(x_n)_n\,,$ [/mm] die gegen ein [mm] $x_0 \in [/mm] X$ konvergiert. Wegen [mm] $f^{-1}(y_{n_{k}})=x_{n_k}$ [/mm] (für alle [mm] $k\,$) [/mm] ist also [mm] $(f^{-1}(y_{n_k}))_k$ [/mm] eine konvergente Teilfolge von [mm] $(f^{-1}(y_n))_n$ [/mm] mit [mm] $f^{-1}(y_{n_k}) \to x_0$ [/mm] ($k [mm] \to \infty$). [/mm] Damit kannst Du nun das gewünschte erhalten.

(Ich schreibe es mal in Worten: Weil [mm] $x_{n_k}=f^{-1}(y_{n_k}) \to x_0$ [/mm] bei $k [mm] \to \infty$ [/mm] gilt, liefert die Stetigkeit von [mm] $f\,,$ [/mm] dass [mm] $f(x_{n_k})$ [/mm] gegen [mm] $f(x_0)$ [/mm] strebt bei $k [mm] \to \infty\,.$ [/mm] Es war aber [mm] $y_n=f(x_n) \to y_0\,.$ [/mm] Nun ein kurzes Argument: Weil Teilfolgen einer jeden konvergenten Folge gegen den gleichen Grenzwert konvergieren (jedenfalls in einem metrischen Raum), muss also [mm] $y_0=f(x_0)$ [/mm] gelten. Fazit?)

Grüße und nun wirklich gute N8,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de