www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit im Punkt x=0
Stetigkeit im Punkt x=0 < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im Punkt x=0: Tipp, Idee, Erklärung
Status: (Frage) beantwortet Status 
Datum: 20:18 Sa 20.12.2008
Autor: Blaze

Aufgabe
geg: [mm] f:[-1,1]\to\IR [/mm] mit [mm] f(x):=\summe_{n=1}^{\infty}x^n/n^2 [/mm]
Untersuchen Sie f auf Stetigkeit im Punkt [mm] x_0=0. [/mm]

In der Uni hatten wir die "normale" Definition der Stetigkeit, die Lipschitz-Stetigkeit und die Gleichmäßige Stetigkeit. Wenn ich nun die Def. der Stetigkeit anwende muss gelten:
[mm] \forall\epsilon>0\exists\delta>0 \forall y\in D:|y-x_0|<\delta ->|f(y)-f(x_0|<\epsilon [/mm]
Nach Anwenden von f und einsetzen von [mm] x_0=0 [/mm] erhalte ich dann:
[mm] \forall\epsilon>0\exists\delta>0 \forall y\in D:|y|<\delta ->|\summe_{n=1}^{\infty}y^n/n^2|<\epsilon [/mm]
Wenn ich das jetzt richtig verstehe muss ich also ein [mm] \delta>0 [/mm] finden, so dass die Funktionswerte von |f(y)| beliebig klein werden [mm] (|f(x)|<\epsilon) [/mm] mit [mm] |y|<\delta. [/mm] Wie gehe ich da nun ran? Oder sollte ich es eher mit der Lipschitz- oder der Gleichmäßigen Stetigkeit versuchen? Uns wurde noch der Tipp gegeben, dass wir den Wert nach oben abschätzen sollen und dann eine Majorante finden müssen, die in 0 auch 0 ist, und dann halt nur noch [mm] \epsilon [/mm] und [mm] \delta [/mm] finden, nur wie das helfen soll weiß ich nicht. Habt ihr da vielleicht eine Idee oder einen Tipp für mich?

        
Bezug
Stetigkeit im Punkt x=0: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 So 21.12.2008
Autor: felixf

Hallo

> geg: [mm]f:[-1,1]\to\IR[/mm] mit [mm]f(x):=\summe_{n=1}^{\infty}x^n/n^2[/mm]
>  Untersuchen Sie f auf Stetigkeit im Punkt [mm]x_0=0.[/mm]
>  In der Uni hatten wir die "normale" Definition der
> Stetigkeit, die Lipschitz-Stetigkeit und die Gleichmäßige
> Stetigkeit. Wenn ich nun die Def. der Stetigkeit anwende
> muss gelten:
>  [mm]\forall\epsilon>0\exists\delta>0 \forall y\in D:|y-x_0|<\delta ->|f(y)-f(x_0|<\epsilon[/mm]
>  
> Nach Anwenden von f und einsetzen von [mm]x_0=0[/mm] erhalte ich
> dann:
>  [mm]\forall\epsilon>0\exists\delta>0 \forall y\in D:|y|<\delta ->|\summe_{n=1}^{\infty}y^n/n^2|<\epsilon[/mm]
>  
> Wenn ich das jetzt richtig verstehe muss ich also ein
> [mm]\delta>0[/mm] finden, so dass die Funktionswerte von |f(y)|
> beliebig klein werden [mm](|f(x)|<\epsilon)[/mm] mit [mm]|y|<\delta.[/mm] Wie
> gehe ich da nun ran? Oder sollte ich es eher mit der
> Lipschitz- oder der Gleichmäßigen Stetigkeit versuchen? Uns
> wurde noch der Tipp gegeben, dass wir den Wert nach oben
> abschätzen sollen und dann eine Majorante finden müssen,
> die in 0 auch 0 ist, und dann halt nur noch [mm]\epsilon[/mm] und
> [mm]\delta[/mm] finden, nur wie das helfen soll weiß ich nicht. Habt
> ihr da vielleicht eine Idee oder einen Tipp für mich?

Ueberleg dir doch mal folgendes: fuer $|x| [mm] \le [/mm] 1$ gilt $|f(x)| [mm] \le [/mm] |x| [mm] \cdot \sum_{n=1}^\infty \frac{1}{n^2}$, [/mm] und letztere Reihe konvergiert gegen einen festen Wert (welcher ist erstmal egal).

LG Felix


Bezug
                
Bezug
Stetigkeit im Punkt x=0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Mo 22.12.2008
Autor: Blaze

Ok, aber wie hilft mir das jetzt weiter? Mein größtes Problem bei der Aufgabe ist, dass ich nicht wirklich verstanden habe wie ich nun mit der Def beweise dass f an der Stelle [mm] x_0 [/mm] stetig ist. Wie zeige ich denn dass f(x) beliebig klein wird wenn man nur nah genug an 0 geht?
Übrigens habe ich dieselbe auch hier gesehen: https://matheraum.de/read?t=486285, sorry dass ich da ein neues Thema gemacht habe. Die Antwort von Marcel habe ich auch verstanden, aber wir hatten den Limes mit x gegen 0 noch nicht definiert.

Bezug
                        
Bezug
Stetigkeit im Punkt x=0: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 22.12.2008
Autor: leduart

Hallo
Da [mm] \summe_{n=1}^{\infty}=g [/mm] weil es konvergiert. wie musst du jetzt |x| wählen, damit [mm] |x|*g<\epsilon? [/mm]
gruss leduart

Bezug
                                
Bezug
Stetigkeit im Punkt x=0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:51 Di 23.12.2008
Autor: Blaze

Also dann einfach [mm] \delta:=\bruch{\epsilon}{g} [/mm] bzw. [mm] \delta:=\bruch{\epsilon}{ \summe_{n=1}^{\infty}\bruch{1}{n^2}} [/mm] und dann wird ja |f(x)| beliebig klein, nach Abhängigkeit von [mm] \epsilon. [/mm] Also läuft die ganz Sache bei der Untersuchung auf Stetigkeit darauf hinaus, dass ich immer das, was ich gegeben habe, so umforme, dass ich einen Ausdruck für [mm] \delta [/mm] erhalte sodass dann der rechte Teil der Implikation [mm] (|f(x)-f(y)|<\epsilon) [/mm] immer wahr ist. Kann  man das so sagen oder wie sollte man da allgemein rangehen?

Bezug
                                        
Bezug
Stetigkeit im Punkt x=0: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Di 23.12.2008
Autor: pelzig


> Also läuft die ganz Sache bei der
> Untersuchung auf Stetigkeit darauf hinaus, dass ich immer
> das, was ich gegeben habe, so umforme, dass ich einen
> Ausdruck für [mm]\delta[/mm] erhalte sodass dann der rechte Teil der
> Implikation [mm](|f(x)-f(y)|<\epsilon)[/mm] immer wahr ist. Kann  
> man das so sagen oder wie sollte man da allgemein rangehen?

Ja, das kann man schon so sagen. Du musst halt so umformen/abschätzen, dass "x" nur noch als [mm] "$|x-x_0|$" [/mm] auftritt. Bei gleichmäßiger Stetigkeit müssen außerdem alle [mm] $x_0$ [/mm] verschwinden und bei Lipschitzstetigkeit brauchst du eine Abschätzung der Form [mm] $|f(x)-f(x_0)|\le ...\le C\cdot|x-x_0|$ [/mm] für eine Konstante [mm] $C\in\IR$. [/mm]

Überlege dir, warum [mm] $\text{lipschitz-stetig}\Rightarrow\text{glm. stetig}\Rightarrow\text{stetig}$ [/mm] gilt.

Gruß, Robert

Bezug
                                                
Bezug
Stetigkeit im Punkt x=0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 23.12.2008
Autor: Blaze

Dass aus gleichm. Stetigkeit Stetigkeit folgt ist klar auf Grund der Definition. Der Beweis, dass Lipschtiz stetige Funktionen auch gleichm. stetig sind sah bei uns so aus:
Seien r>0 und L>0, und [mm] \epsilon>0 [/mm] beliebig vorgegeben.
[mm] \delta:=min(r,\bruch{\epsilon}{L}). [/mm]
Dann folgt aus [mm] y\in [/mm] D, [mm] |y-x|<\delta \le [/mm] r
[mm] \Rightarrow y\in [/mm] (x-r,x+r)
[mm] \Rightarrow |f(x)-f(y)|\le L|x-y|
Aber warum muss ich da am Anfang [mm] \delta:=min(r,\bruch{\epsilon}{L}). [/mm] setzen? Würde da nicht auch einfach [mm] \delta :=\bruch{\epsilon}{L} [/mm] reichen?

Bezug
                                                        
Bezug
Stetigkeit im Punkt x=0: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 23.12.2008
Autor: pelzig


> Dass aus gleichm. Stetigkeit Stetigkeit folgt ist klar auf
> Grund der Definition. Der Beweis, dass Lipschtiz stetige
> Funktionen auch gleichm. stetig sind sah bei uns so aus:
>  Seien r>0 und L>0, und [mm]\epsilon>0[/mm] beliebig vorgegeben.
> [mm]\delta:=min(r,\bruch{\epsilon}{L}).[/mm]
>  Dann folgt aus [mm]y\in[/mm] D, [mm]|y-x|<\delta \le[/mm] r
>  [mm]\Rightarrow y\in[/mm] (x-r,x+r)
>  [mm]\Rightarrow |f(x)-f(y)|\le L|x-y|
>  
> Aber warum muss ich da am Anfang
> [mm]\delta:=min(r,\bruch{\epsilon}{L}).[/mm] setzen? Würde da nicht
> auch einfach [mm]\delta :=\bruch{\epsilon}{L}[/mm] reichen?

Das r ist, wie mir scheint, in diesem Beweis nur ein technisches Hilfsmittel, um auch sicherzustellen, dass der Ausdruck $f(y)$ überhaupt wohldefiniert ist, d.h. dass y noch im Definitionsbereich von f liegt. Die wesentliche Idee ist natürlich, dass [mm] $|x-y|\le\frac{\varepsilon}{L}$ [/mm] ist.

Gruß, Robert

Bezug
                                                                
Bezug
Stetigkeit im Punkt x=0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Do 25.12.2008
Autor: Blaze

Alles klar dankeschön^^. Eine Frage habe ich aber trotzdem noch, kannst du mir nicht einen Tipp geben wann ich am Besten mit der Gleichmäßigen Stetigkeit, mit der Lipschitzstetigkeit oder mit der normalen Definition der Stetigkeit rangehen sollte bzw. gibt es da irgendwelche Merkmale oder Besonderheiten? Wo kann ich denn zur Stetigkeit noch Beispielaufgaben mit Lösungen finden?

Bezug
                                                                        
Bezug
Stetigkeit im Punkt x=0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Do 25.12.2008
Autor: pelzig


> kannst du mir nicht einen Tipp geben wann ich am
> Besten mit der Gleichmäßigen Stetigkeit, mit der
> Lipschitzstetigkeit oder mit der normalen Definition der
> Stetigkeit rangehen sollte bzw. gibt es da irgendwelche
> Merkmale oder Besonderheiten?

Ich versteh die Frage nicht ganz. Wenn nach gleichmäßiger Stetigkeit gefragt wird, reicht es eben nicht, nur Stetigkeit zu zeigen... Lipschitzstetigkeit ist einfach die "stärkste" Stetigkeit von diesen dreien. Funktionen, die auf einem kompakten Menge (für Teilmengen der reellen Zahlen ist dies gleichbedeutend mit abgeschlossen und beschränkt) stetig sind, sind z.B. automatisch gleichmäßig stetig. und Funktionen, deren Ableitung beschränkt sind, sind automatisch Lipschitzstetig.

> Wo kann ich denn zur
> Stetigkeit noch Beispielaufgaben mit Lösungen finden?

In jedem Lehrbuch zur Analysis... Überlege dir Beispiele für Funktionen, die stetig, aber nicht gleichmäßig stetig sind, oder glm. stetig, aber nicht lipschitzstetig usw.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de