www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit im R2
Stetigkeit im R2 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im R2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Fr 25.04.2014
Autor: Schuricht

Aufgabe
Zeigen Sie, dass [mm] f:\IR^2\rightarrow\IR [/mm] mit [mm] f(x)=\begin{cases} 0, & \mbox{für } (x,y)\not=0 \\ \bruch{xy}{|x|}, & \mbox{sonst} \end{cases} [/mm] stetig ist.


Um die Stetigkeit im [mm] \IR^2 [/mm] zu zeigen, bin ich folgendermaßen vorgegangen:

[mm] |x|=\sqrt{x^2+y^2}. [/mm] Sei [mm] y_0 [/mm] fest. Sei [mm] {x_n} [/mm] beliebige Folge.

1. Fall: [mm] (x,y)\not=0 [/mm]

[mm] f(x_n,y_0)=\bruch{xy_0}{|x|}=\bruch{xy_0}{\sqrt{x^2+y_0^2}}=\sqrt{\bruch{x^2y_0^2}{x^2+y_0^2}}=\bruch{y_0}{\sqrt{1+y_0^2}} [/mm]
[mm] \Rightarrow \limes_{n\rightarrow\infty}f(x_n)=\bruch{y_0}{\sqrt{1+y_0^2}} [/mm] mit [mm] {x_n} [/mm] beliebig [mm] \Rightarrow [/mm] f in diesem Fall stetig.
(Dieser Fall ist für [mm] {y_n} [/mm] mit festem [mm] x_0 [/mm] analog zu betrachten)


2. Fall: (x,y)=0.

Wie betrachte ich jetzt diesen Fall?



        
Bezug
Stetigkeit im R2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 26.04.2014
Autor: Schuricht

Hallo?

Bezug
        
Bezug
Stetigkeit im R2: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Sa 26.04.2014
Autor: leduart

Hallo
du musst nur (0,0) ansehen, da es sonst überall ein Produkt, bzw. Quotient stetiger fkt. ist.
> Zeigen Sie, dass [mm]f:\IR^2\rightarrow\IR[/mm] mit

> [mm]f(x)=\begin{cases} 0, & \mbox{für } (x,y)\not=0 \\ \bruch{xy}{|x|}, & \mbox{sonst} \end{cases}[/mm]
> stetig ist.
>  
> Um die Stetigkeit im [mm]\IR^2[/mm] zu zeigen, bin ich
> folgendermaßen vorgegangen:
>  
> [mm]|x|=\sqrt{x^2+y^2}.[/mm] Sei [mm]y_0[/mm] fest. Sei [mm]{x_n}[/mm] beliebige
> Folge.

was soll das heißen? wie beliebig? z.B, [mm] x_n=e^n [/mm] oder [mm] x_n=sin(n) [/mm]

> 1. Fall: [mm](x,y)\not=0[/mm]
>  
> [mm]f(x_n,y_0)=\bruch{xy_0}{|x|}=\bruch{xy_0}{\sqrt{x^2+y_0^2}}=\sqrt{\bruch{x^2y_0^2}{x^2+y_0^2}}=\bruch{y_0}{\sqrt{1+y_0^2}}[/mm]

was sooll das letzte = Zeichen, wieso ist plötzlich x=1??
links steht [mm] x_n, [/mm] rechts kommt es nicht mehr vor?

>  [mm]\Rightarrow \limes_{n\rightarrow\infty}f(x_n)=\bruch{y_0}{\sqrt{1+y_0^2}}[/mm]
> mit [mm]{x_n}[/mm] beliebig [mm]\Rightarrow[/mm] f in diesem Fall stetig.
>  (Dieser Fall ist für [mm]{y_n}[/mm] mit festem [mm]x_0[/mm] analog zu
> betrachten)
>  
>
> 2. Fall: (x,y)=0.

Wenn du den ersten Fall wirklich brauchst, dann neu!
bei 0
betrachte eine Umgebunb von 0 setze x=rcost, y=rsint, zeige, dass für r gegen 0 der GW 0 ist unabhängug von t
Gruss leduart


Bezug
                
Bezug
Stetigkeit im R2: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:06 So 27.04.2014
Autor: Schuricht

Ich habe das jetzt folgendermaßen gemacht:

Betrachte zunächst Stetigkeit von f in (0,0):

Es folgt mit [mm] (x-y)^2=x^2+y^2-2xy \ge [/mm] 0, dass [mm] x^2+y^2 \ge [/mm] 2xy (*)

Untersuche f an Stelle (0,0). Sei [mm] t=(x,y)\in \IR^2 [/mm] ohne [mm] \{(0,0)\}. [/mm] Dann gilt:
[mm] |f(x,y)|=\bruch{|xy|}{\sqrt{x^2+y^2}}\underbrace{\le}_{(*)}\bruch{|xy|}{\sqrt{2xy}}=\sqrt{\bruch{x^2y^2}{2xy}}=\sqrt{\bruch{xy}{2}}\le=\sqrt{\bruch{x^2+y^2}{4}}\le\sqrt{x^2+y^2}=|t|\rightarrow [/mm] 0 für (x,y) gegen 0.
[mm] \Rightarrow [/mm] f ist in (0,0) stetig.

Bezug
                        
Bezug
Stetigkeit im R2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 29.04.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de