www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit in x_0
Stetigkeit in x_0 < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit in x_0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Mi 09.01.2008
Autor: Smex

Aufgabe
Definiere f: [mm] \IR \to \IR [/mm] durch

[mm] f(x):=\begin{cases} 0, & \mbox{falls } x \not\in \IQ \\ \bruch{1}{q}, & \mbox{für } \bruch{p}{q} \in \IQ, p \in \IZ, q \in \IN \backslash \{0\}, p,q \mbox{ teilerfremd} \end{cases} [/mm]

Zeigen Sie: f ist stetig in [mm] x_0 [/mm] genau dann, wenn [mm] x_0 \in \IR \backslash \IQ. [/mm]

Hi,

Kann mir vielleicht jemand nen Tipp oder Ansatz geben??
Ich habe überhaupt keine Ahnung wie das gehen soll.

Vielen Dank

Gruß Smex

        
Bezug
Stetigkeit in x_0: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Do 10.01.2008
Autor: angela.h.b.


> Definiere f: [mm]\IR \to \IR[/mm] durch
>  
> [mm]f(x):=\begin{cases} 0, & \mbox{falls } x \not\in \IQ \\ \bruch{1}{q}, & \mbox{für } \bruch{p}{q} \in \IQ, p \in \IZ, q \in \IN \backslash \{0\}, p,q \mbox{ teilerfremd} \end{cases}[/mm]
>  
> Zeigen Sie: f ist stetig in [mm]x_0[/mm] genau dann, wenn [mm]x_0 \in \IR \backslash \IQ.[/mm]
>  
> Hi,
>  
> Kann mir vielleicht jemand nen Tipp oder Ansatz geben??
>  Ich habe überhaupt keine Ahnung wie das gehen soll.

Hallo,

Du bist nun seit exakt zwei Monaten hier im Forum, und ich gehe eigentlich davon aus, daß Du inzwischen mitbekommen hast, daß Du Deine Fragen hier mit eigenen Lösungsansätzen stellen sollst.

Warum hast Du keine Ahnung, wie das geht?

Ist Dir die Def. der Stetigkeit geläufig, und zwar sowohl mit Folgen als auch mit [mm] \varepsilon [/mm] - [mm] \delta [/mm] ?

Kannst Du die Funktion beschreiben, was macht die?


Die Aussage "f ist stetig in $ [mm] x_0 [/mm] $ genau dann, wenn $ [mm] x_0 \in \IR \backslash \IQ. [/mm] $" hat ja zwei Richtungen, für den Beweis solltest Du sie unbedingt sauber getrennt formulieren und beweisen.

Äquivalent zu dieser Aussage ist

Genau dann, wenn [mm] x_0 \in \IQ, [/mm] ist f unstetig in [mm] x_0. [/mm]    (Kontraposition)

Es kommt mir so vor, als  wäre sie einfacher zu beweisen.

Gruß v. Angela








Bezug
        
Bezug
Stetigkeit in x_0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Do 10.01.2008
Autor: Smex

Hi,

mal eine kurze Nachfrage zu der Aufgabe:

der letzte Satz: f ist stetig in $ [mm] x_0 [/mm] $ genau dann, wenn $ [mm] x_0 \in \IR \backslash \IQ. [/mm] $    bedeutet doch, dass [mm] f(x_0) [/mm] laut Definition =0 ist, oder?

Gruß Smex

Bezug
                
Bezug
Stetigkeit in x_0: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Do 10.01.2008
Autor: angela.h.b.


> der letzte Satz: f ist stetig in [mm]x_0[/mm] genau dann, wenn [mm]x_0 \in \IR \backslash \IQ.[/mm]
>    bedeutet doch, dass [mm]f(x_0)[/mm] laut Definition =0 ist,
> oder?

Meinst Du dies: [mm] x_0 \in \IR \backslash \IQ [/mm]  ==> [mm] f(x_0)=0 [/mm]  ?

Das stimmt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de