Stetigkeit von Funktionen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm]f:D \subset\IR^2 \Rightarrow \IR [/mm]stetig, wobei D=[mm] {(x,y) : a \le x \le b, c \le y \le d }[/mm]
Zeigen sie, dass die Funktion g(x) = [mm] \max_{y\in[c,d]} f(x,y) [/mm] auf [a,b] stetig ist. |
Mahlzeit. Ich bräuchte einen kleinen Denkanstoß. Wir haben an der Uni gerade erst damit begonnen, von daher fehlt mir noch die Übung und das jetzt gleich ein max f(x,y) auftaucht haut mich um. Bitte jemand einen Rat.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:35 Di 04.12.2012 | Autor: | leduart |
Hallo Madhatter
schreib erstmal auf, was die Stigkeit von f(x,y) bedeutet. Was kannst du daraus schließen für das [mm] max(f(x_1,y)) [/mm] und max [mm] f(x_2,y) [/mm] wenn [mm] |x1-x_2|<\delta?
[/mm]
um Erfahrung zu sammeln kannst du auch eine einfache stetige fkt wie f(x,y)=a*x*y oder [mm] x^by^m [/mm] ansehen, etwa auf 1<x<2, 1<y<2
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:02 Mi 05.12.2012 | Autor: | MadHatter |
Stetigkeit heißt ich kann den Graph zeichnen ohne den Stift abzusetzen!
Spaß bei Seite, ich hab keine Ahnung. Das f(x,y) verwirrt mich.
Für alle f(x)=irgendwas versteh ich das Prinzip. Aber das...
Formal gesprochen denk ich mal heißt es so:
f:R² -> R heißt stetig im Punkte [mm] (x_{0}, y_{0}) [/mm] falls es zu jedem
[mm] \varepsilon [/mm] > 0 ein [mm] \delta [/mm] >0 gibt, so dass für alle [mm] (x,y)\in [/mm] R² mit [mm] |(x,y)-(x_{0},y_{0}| [/mm] < [mm] \delta [/mm] gilt: [mm] |f(x,y)-f(x_{0},y_{0}| [/mm] < [mm] \varepsilon
[/mm]
Und normalerweise würde ich umformen bis ich alles hab was ich brauche, aber hier gibt´s nicht viel zum umformen f(x,y) ist f(x,y). Oder ist g(x) meine Bildungsvorschrift für f(x,y). Würde mich wundern.
|
|
|
|
|
Wie wärs damit.
Sei [mm] x_{n} [/mm] -> u mit u [mm] \in [/mm] [a,b], [a,b] kompakt
[mm] |x_{n}-u| [/mm] < [mm] \delta \Rightarrow |f(x_{n},y)|\le |f(x_{n},y)|-|f(u,y)|<\varepsilon \Rightarrow |f(u,y)|-\varepsilon<|f(x_{n},y)|<|f(u,y)|+\varepsilon \Rightarrow [/mm] f(x,y) gleichmäßig stetig
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:52 Do 06.12.2012 | Autor: | fred97 |
> Wie wärs damit.
> Sei [mm]x_{n}[/mm] -> u mit u [mm]\in[/mm] [a,b], [a,b] kompakt
> [mm]|x_{n}-u|[/mm] < [mm]\delta \Rightarrow |f(x_{n},y)|\le |f(x_{n},y)|-|f(u,y)|<\varepsilon \Rightarrow |f(u,y)|-\varepsilon<|f(x_{n},y)|<|f(u,y)|+\varepsilon \Rightarrow[/mm]
> f(x,y) gleichmäßig stetig
Mit Verlaub, aber das ist nur wirr und alle [mm] \Rightarrow [/mm] sind Unsinn.
FRED
>
>
|
|
|
|