www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stichproben ohne Zurücklegen
Stichproben ohne Zurücklegen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stichproben ohne Zurücklegen: Ohne konkrete Werte
Status: (Frage) beantwortet Status 
Datum: 23:00 Do 09.07.2015
Autor: magics

Aufgabe
Eine Warenlieferung enthalte 5% Ausschuss.

Der Umfang der Warenlieferung sei n. Wie groß ist im Falle n = 20, n = 100, n = 1000 die Wahrscheinlichkeit dafür, dass sich unter 10 zufällig ohne Zurücklegen herausgegriffenen Stücken mindestens ein schlechtes befindet?

(Man berechne diese Wahrscheinlichkeiten unter geeigneten Annahmen.)



Hallo,

bevor ich meine Frage stelle möchte ich eine Lösung vorstellen.

Für den ersten Fall n = 20, würde ich davon ausgehen, dass wir 20 * 0,05  = 1 schlechtes Teil in der Menge hätten.

Ausgehend davon hätten wir also 19 gute, 1 schlechtes, 20 gesamt und die Anzahl der gezogenen sei x = 10.

Die gesuchte Wahrscheinlichkeit ist also für das Ereignis

A = "mindestens ein schlechtes in der Ziehung"
[mm] A_i [/mm] = "genau i gute Elemente in der Ziehung"

P(A) = 1 - [mm] P(A_1 \cap [/mm] ... [mm] \cap A_{10}) [/mm]

Unter Benutzung der Formel für die hypergeometrische Verteilung:

P(A) = 1 - [mm] \bruch{\vektor{19 \\ 10} * \vektor{1 \\ 0}}{\vektor{20 \\ 10}} [/mm] = 0,5

Analog für n = 100
P(A) = 1 - [mm] \bruch{\vektor{95 \\ 10} * \vektor{5 \\ 0}}{\vektor{100 \\ 10}} [/mm] = 0,416

Analog für n = 1000
P(A) = 1 - [mm] \bruch{\vektor{950 \\ 10} * \vektor{50 \\ 0}}{\vektor{1000 \\ 10}} [/mm] = 0,402


Frageteil

Was mich verunsichert ist, dass man obwohl man nur die Gesamtanzahl der Elemente kennt (20, 100, 1000), durch Multiplikation mit der gegebene Wahrscheinlichkeit (z.B. 0,05) die Anzahl der schlechten Elemente ermittelt, die hypothetisch in der Menge enthalten sind. Tatsächlich können es ja aber auch 0 schlechte Elemente sein.

Ist diese Vorgehensweise legitim?

Wenn ja... wie soll man dann einen folgenden Fall Berechnen:

Ausgangslage sind wieder n = 20 Elemente mit einem Ausschuss von 5%, gezogen werden 10 Elemente.
Ereignis A = "8 schlechte Elemente"

Die hypergeometrische Verteilung würde in diesem Fall so aussehen:
P(A) = 1 - [mm] \bruch{\vektor{19\\ 2} * \vektor{1 \\ 8}}{\vektor{20\\ 10}} [/mm] = ?

...was ja wegen [mm] \vektor{1 \\ 8} [/mm] nicht funktionieren kann. Wie rechnet man diesen Fall?

lg
magics

        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Fr 10.07.2015
Autor: leduart

Hallo
die Aussage die Lieferung enthaelt 5% Ausschuss ist eine andere als die  Aussage ueber die Wahrscheinlichket des Ausschusses. sie sagt es sind wirklich 5% der Teile defekt.. mit der annahme 1 von 20 hast du also recht.
Gruss leduart



Bezug
                
Bezug
Stichproben ohne Zurücklegen: Kann es so einfach sein?
Status: (Frage) beantwortet Status 
Datum: 03:17 Fr 10.07.2015
Autor: magics

Hallo,

und danke für deine Antwort.

Vom Bauchgefühl her stimme ich dir nicht zu. Meiner Meinung nach ist das höchstens eine Auslegungssache... wir sprechen hier ja schließlich von einer Stichprobe von irgendwelchen Produkten, dass da exakt 5% Ausschuss ist, das kann man gar nicht wissen... man kann höchstens sagen "Die Erfahrung hat gezeigt, dass im Mittel 5% Ausschuss sind", und da das Mittel ein erwartungstreuer Schätzer ist, "darf" man eben n * 0,05 rechnen... was jetzt meine Begründung gewesen wäre.

Nichts desto trotz bleibt die Frage, wie man im Fall, dass man unwahrscheinlich viele Ausschussgüter ziehen will die Formel für die hypergeometrische Verteilung noch gebacken bekommt...

Aber vermutlich denk ich zu kompliziert.

lg
magics

Bezug
                        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:41 Fr 10.07.2015
Autor: luis52


> Hallo,
>  
> und danke für deine Antwort.
>  
> Vom Bauchgefühl her stimme ich dir nicht zu. Meiner
> Meinung nach ist das höchstens eine Auslegungssache... wir
> sprechen hier ja schließlich von einer Stichprobe von
> irgendwelchen Produkten, dass da exakt 5% Ausschuss ist,
> das kann man gar nicht wissen...  

Moin, das ist keine Auslegungssache. Die Aufgabenvoraussetzung lautet: Eine Warenlieferung enthalte 5% Ausschuss -- Punkt. Damit kannst du arbeiten.

Bezug
        
Bezug
Stichproben ohne Zurücklegen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Fr 10.07.2015
Autor: luis52

  
>  
> ...was ja wegen [mm]\vektor{1 \\ 8}[/mm] nicht funktionieren kann.
> Wie rechnet man diesen Fall?


Moin, per defitionem ist [mm] $\binom{m}{n}=0$ [/mm] fuer $m<n$.

Bezug
                
Bezug
Stichproben ohne Zurücklegen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:52 Fr 10.07.2015
Autor: magics

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de