Stochastik LK 2003, II3 (BaWü) < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:50 Di 29.03.2005 | Autor: | Adeno |
Hi,
ich habe bei der Abiaufgabe von 2003 (LK), Baden-Württemberg ein Problem.
Die Aufgabe kommt in dem ABITUR 2005-Buch vom STARK Verlag auf Seite 126.
Wer es nicht hat:
"Eine Gärtnerei bietet Tulpenzwiebeln an. Sie sichert den Kunden zu, dass es bei 90% der Zwiebeln im nächsten Frühjahr zu einer Blüte kommen wird."
Die Frage: "Herr Meier kauft 20 Tulpenzwiebeln. Berechnen sie die Wahrscheinlichkeit folgender Ereignisse:
B: Mindestens 15 Tulpen werden blühen".
Wie mach ich das nun genau? Ich würde das Gegenereignis (höchstens 14 blühen) bestimmen. Aber das wird ja eine ewige Rechnung geben.
In der Lösung steht folgendes: P(B) = 1 - P(X <= 14)
= 1-F 20; 0,9 (14) wobei 20;0,9 tiefgestellt ist.
Was bedeutet diese Lösung?
Grüße und danke
bye
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:33 Mi 30.03.2005 | Autor: | Adeno |
Hallo Stefan,
danke für deine Antwort!!
Aber: Wie lese ich das nun bei der Tabelle ab? Mein p geht ja über 0,5 hinhaus (in meinem Fall 0,9).
Und eine solche Tabelle haben wir nicht in unserer Formelsammlung. Gibt es keine Formel oder andere Möglichkeit, wie ich auf das Ergebnis komme?
>Deine Idee war ja völlig richtig!
die Idee vielleicht ;) aber irgendwie komme ich trotzdem nicht auf das Ergebnis.
Kannst du mir einen Ansatz geben, wie es genau funktioniert. Wäre super!!
Danke schön!
bye
Jan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:42 Mi 30.03.2005 | Autor: | Stefan |
Hallo Adeno!
Naja, das Ereignis $B$ ist ja gleichbedeutend mit
"höchstens 5 Tulpen werden nicht blühen".
Ist $Y$ die Anzahl der nicht blühenden Tulpen, so ist $Y$ binomialverteilt mit Parametern $n=20$ und $p=0,1$.
Und gesucht ist
$P(B) = [mm] P(Y\le [/mm] 5)$.
Hast du jetzt den Durchblick?
Viele Grüße
Stefan
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:57 Mi 30.03.2005 | Autor: | Adeno |
Ohhh ups.. na klar. *peinlich*
Das Gegenereignis hatte ich ja total vergessen ;).
Aber, wenn ich die Tabelle nun nicht habe, bleibt mir ja nichts anderes übrig, als es in der längeren Rechnung zu machen.
Irgendwie kriege ich selbst das grade nicht hin.
Das wäre doch eigentlich:
1 - ( [mm] 0,1^5 [/mm] + [mm] (0,1^4 [/mm] * 0,9) + [mm] (0,1^3 [/mm] * [mm] 0,9^2) [/mm] .... .... ....)
Aber die inneren Klammern [mm] (0,1^4 [/mm] * 0,9) muss ich doch nun noch mal die Möglichkeiten der Vertauschung rechnen. Oder stehe ich da gerade wieder auf dem Schlauch?
|
|
|
|
|
Hi, Adeno,
> Aber, wenn ich die Tabelle nun nicht habe, bleibt mir ja
> nichts anderes übrig, als es in der längeren Rechnung zu
> machen.
Nun bin ich zwar über die Verhältnisse in Baden-Württemberg nicht sooo gut informiert, aber in anderen Bundesländern ist die Verwendung eines sog. "Tafelwerks" (also solcher Tabellen wie Stefan sie erwähnt) in der Stochastik-AP nicht nur zugelassen, sondern gradezu unumgänglich!
> Irgendwie kriege ich selbst das grade nicht hin.
> Das wäre doch eigentlich:
>
> 1 - ( [mm]0,1^5[/mm] + [mm](0,1^4[/mm] * 0,9) + [mm](0,1^3[/mm] * [mm]0,9^2)[/mm] .... ....
> ....)
> Aber die inneren Klammern [mm](0,1^4[/mm] * 0,9) muss ich doch nun
> noch mal die Möglichkeiten der Vertauschung rechnen. Oder
> stehe ich da gerade wieder auf dem Schlauch?
Da ist sogar noch ein bisschen mehr falsch!
Solltest Du aber wirklich keine Tabelle verwenden dürfen, wirst Du bei Deiner Aufgabenstellung doch lieber nicht über das Gegenereignis rechnen, denn dann ist der "direkte" Weg immer noch kürzer:
P(X [mm] \ge [/mm] 15) = P(X=15) + ... + P(X=20)
= [mm] \vektor{20 \\ 15}*0,9^{15}*0,1^{5} [/mm] + ... + [mm] \vektor{20 \\ 20}*0,9^{20}*0,1^{0} [/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:32 Mi 30.03.2005 | Autor: | Adeno |
Hi zwerglein,
danke schön! Jetzt hat's vollends geklappt. Auch dir (Stefan) nochmal ein herzliches Dankeschön für die schnelle Hilfe :).
Eigentlich logisch... irgendwie glaube ich, dass inzwischen zu viel BWL und Mathe in meinem Kopf ist
Es ist wirklich so, dass wir keine solche Tabelle im Abi haben. Wir haben nur unsere Formelsammlung - mehr nicht. Und da kommt keine drinnen.
Allerdings muss ich dazu sagen, dass ich keine vergleichbare Aufgabe in 2 Abibüchern und unseren beiden Schulbüchern gefunden habe. Das war wirklich die einzigste "dieser Art". Normalerweise sind es einfachere Bedinungen, wie zum Beispiel "eine der 20 Tulpen blüht nicht", oder "Mehr als eine Tulpe blüht". Aber so etwas wie in diesem Fall ("Mindestens 15 Tulpen werden blühen") kam sonst nicht vor.
Danke, & gute Nacht
Jan
|
|
|
|