www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Stochastische Unabhängigkeit?
Stochastische Unabhängigkeit? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit?: Idee
Status: (Frage) beantwortet Status 
Datum: 21:00 Fr 18.03.2011
Autor: ravernet

Aufgabe
Gegeben sei der W-Raum
(Omega,A,P) = ({1; 2; 3},P({1; 2; 3}); P)
mit P({j}) = 1/3

für j € {1, 2, 3}.
Es liegt also die diskrete Gleichverteilung vor.
Die ZVen X : (Omega) ->R(Reelle Zahlen)
und Y :(Omega) ->R(Reelle Zahlen)
seien de niert durch X(1) = -1; X(2) = 0; X(3) = 1
sowie
Y (1) = 0; Y (2) = 1 und Y (3) = 0 :
Überprüfen Sie, ob X und Y stochastisch unabhängig sind

Zur Aufgabe oben habe ich folgende Frage:

Es gilt: Ereignisse X und Y sind stochastisch unabhängig, wenn gilt:

P(X [mm] \cap [/mm] Y) = P(X) * P(Y)

ist dies dann:
für die Ereignisse X(1) , X(2) sowie Y(1) und Y(2) folgendes:
P(X [mm] \cap [/mm] Y ) = 0
P(X) = -1 *0 = 0
P(Y) = 0 * 1 = 0
P(X [mm] \cap [/mm] Y ) = 0  * 0
Somit gilt eine stochastische Unabhängigkeit.

Ist mein Gedanke richtig oder bin ich auf dem komplett falschen Weg ?

        
Bezug
Stochastische Unabhängigkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Sa 19.03.2011
Autor: vivo

Hallo,

$X$ bzw. $Y$ sind keine Ereignisse! Es sind Zufallsvariablen, diese sind unabhängig falls die von ihnen erzeugten Ereignissräume unabhängig sind.

Du musst also was prüfen?

gruß

Bezug
                
Bezug
Stochastische Unabhängigkeit?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:34 Sa 19.03.2011
Autor: ravernet

Ich muss demnach die Ereignisräume der Zufallsvariablen auf unabhängigkeit prüfen ?

Hab ich dies nicht durch

-------------------------------

P(X $ [mm] \cap [/mm] $ Y) = P(X) * P(Y)

ist dies dann:
für die Ereignisse X(1) , X(2) sowie Y(1) und Y(2) folgendes:
P(X $ [mm] \cap [/mm] $ Y ) = 0
P(X) = -1 *0 = 0
P(Y) = 0 * 1 = 0
P(X $ [mm] \cap [/mm] $ Y ) = 0  * 0

---------------------------------

gemacht?

Bezug
                        
Bezug
Stochastische Unabhängigkeit?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Sa 19.03.2011
Autor: vivo

Hallo,

was soll denn $P[X]=0$ sein!

$P[X = -1] =  [mm] \frac{1}{3}$ [/mm] ist die Wahrscheinlichkeit, dass die Zufallsvaraible $X$ den Wert -1 annimmt.

Mach dir erstmal klar was eine Zufallsvaraibel überhaupt ist.

Bei Fragen helfen wir dir gerne weiter.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de