www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Frage
Status: (Frage) beantwortet Status 
Datum: 09:43 Di 13.09.2005
Autor: BAGZZlash

Hi!

Ich soll zeigen, daß der Parametervektor [mm] \tilde \beta [/mm] einer Maximum-Likelihood-Schätzung stochastisch unabhängig ist von der Störgrößenvarianz [mm] \tilde \sigma^{2}. [/mm] Mein Denkansatz ist, daß unter Normalverteilung Unabhängigkeit und Unkorreliertheit äquivalent sind, ich somit nur zeigen muß, daß gilt [math]cov(\tilde \beta, \tilde \sigma^{2})=0[/math]. Dies zu zeigen ist auch kein Problem, die Sache ist nur: Normalverteilung für [mm] \tilde \beta [/mm] anzunehmen ist kein Problem, aber [mm] \tilde \sigma^{2} [/mm] ist [mm] \chi^{2} [/mm] -verteilt, oder? Oder denke ich zu kompliziert und es ist statt dessen so, daß auch [mm] \tilde \sigma^{2} [/mm] normalverteilt ist, weil die Störgröße [math]\hat u[/math] die einzige stochastische Größe ist, von der [mm] \tilde \sigma^{2} [/mm] abhängt, und da [math]\hat u[/math] normalverteilt ist, auch [mm] \tilde \sigma^{2} [/mm] normalverteilt sein muß (Transformationssatz)?
Da [math]\tilde \sigma^{2} = \bruch{\hat u^{T}\hat u}{n}[/math], müsste doch aber [mm] \tilde \sigma^{2} [/mm] schon [mm] \chi^{2} [/mm] -verteilt sein, oder? Dann kann ich unabhängig [mm] \gdw [/mm] unkorreliert nicht anwenden, denn es gilt nur unabhängig  [mm] \Rightarrow [/mm] unkorreliert, die Rückwärtsrichtung ist also nicht erlaubt.
Um es nochmal anders zu formulieren: Wenn eine ZV [math]U \sim \chi_{n}^{2}[/math], gilt dann für [math]Z=\bruch{U}{n} \sim NV[/math]?
Vielen Dank im Voraus für Eure Hilfe! :-)

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Fr 16.09.2005
Autor: Brigitte

Hallo nochmal!

> Ich soll zeigen, daß der Parametervektor [mm]\tilde \beta[/mm] einer
> Maximum-Likelihood-Schätzung stochastisch unabhängig ist
> von der Störgrößenvarianz [mm]\tilde \sigma^{2}.[/mm] Mein
> Denkansatz ist, daß unter Normalverteilung Unabhängigkeit
> und Unkorreliertheit äquivalent sind, ich somit nur zeigen
> muß, daß gilt [math]cov(\tilde \beta, \tilde \sigma^{2})=0[/math]. Dies
> zu zeigen ist auch kein Problem, die Sache ist nur:
> Normalverteilung für [mm]\tilde \beta[/mm] anzunehmen ist kein
> Problem, aber [mm]\tilde \sigma^{2}[/mm] ist [mm]\chi^{2}[/mm] -verteilt,
> oder? Oder denke ich zu kompliziert und es ist statt dessen
> so, daß auch [mm]\tilde \sigma^{2}[/mm] normalverteilt ist, weil die
> Störgröße [math]\hat u[/math] die einzige stochastische Größe ist, von
> der [mm]\tilde \sigma^{2}[/mm] abhängt, und da [math]\hat u[/math] normalverteilt
> ist, auch [mm]\tilde \sigma^{2}[/mm] normalverteilt sein muß
> (Transformationssatz)?
>  Da [math]\tilde \sigma^{2} = \bruch{\hat u^{T}\hat u}{n}[/math], müsste
> doch aber [mm]\tilde \sigma^{2}[/mm] schon [mm]\chi^{2}[/mm] -verteilt sein,
> oder? Dann kann ich unabhängig [mm]\gdw[/mm] unkorreliert nicht
> anwenden, denn es gilt nur unabhängig  [mm]\Rightarrow[/mm]
> unkorreliert, die Rückwärtsrichtung ist also nicht
> erlaubt.
>  Um es nochmal anders zu formulieren: Wenn eine ZV [math]U \sim \chi_{n}^{2}[/math],
> gilt dann für [math]Z=\bruch{U}{n} \sim NV[/math]?

Nein, das gilt bestimmt nicht. Ich vermute, Du musst das Problem mit linearer Algebra in den Griff bekommen, d.h. [mm] $\tilde\beta$ [/mm] und [mm] $\tilde \sigma^2$ [/mm] als Linearkombination von Vektoren einer Orthonormalbasis im [mm] $\IR^n$ [/mm] darstellen und darüber begründen, dass die Schätzer unabhängig sind. Womit arbeitet ihr denn? Habt ihr ein Skript oder Buch? Da sollte es schon Ansätze in dieser Richtung gegeben haben.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de