www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Strahl=>Ebene schneiden
Strahl=>Ebene schneiden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Strahl=>Ebene schneiden: Frage
Status: (Frage) beantwortet Status 
Datum: 23:16 Mo 09.05.2005
Autor: tciny

Hi,

ich hab gerade das Problem, dass ich einen Strahl mit einer Ebene schneiden muss und keine ordentliche Lösung dafür finde.
Vorhanden sind:
Der Ursprung des Strahls,
die Richtung des Strahls (Vektor),
die Normale der Ebene,
min 3 Punkte der Ebene

Bin für jede Hilfe dankbar,

Jan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Strahl=>Ebene schneiden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Mo 09.05.2005
Autor: Marcel

Hallo Jan!

> Hi,
>  
> ich hab gerade das Problem, dass ich einen Strahl mit einer
> Ebene schneiden muss und keine ordentliche Lösung dafür
> finde.
>  Vorhanden sind:
>  Der Ursprung des Strahls,

Nennen wir ihn mal [mm] $\vec{p}=\vektor{p_1\\p_2\\p_3} \in \IR^3$. [/mm]

>  die Richtung des Strahls (Vektor),

Das sei [mm] $\vec{v}=\vektor{v_1\\v_2\\v_3}\in \IR^3$. [/mm]

Dann ist der Strahl $S$ gegeben durch die Gleichung:
S: [mm] $\vektor{x_1\\x_2\\x_3}=\vektor{p_1\\p_2\\p_3}+t*\vektor{v_1\\v_2\\v_3}$, [/mm] $t [mm] \ge [/mm] 0$.

>  die Normale der Ebene,
>  min 3 Punkte der Ebene

Hm, wenn du hier aber doch drei Punkte [mm] $A(a_1,\;a_2,\;a_3)$, $B(b_1,\;b_2,\;b_3)$ [/mm] und [mm] $C(c_1,\;c_2,\;c_3)$ [/mm] der Ebene gegeben hast, so dass z.B. die Vektoren [mm]\vektor{b_1-a_1\\b_2-a_2\\b_3-a_3}[/mm], [mm]\vektor{c_1-a_1\\c_2-a_2\\c_3-a_3}[/mm] linear unabhängig sind , dann läßt sich doch die Ebene $E$ doch z.B. wie folgt beschreiben:
$E:$ [m]\vektor{x_1\\x_2\\x_3}=\vektor{a_1\\a_2\\a_3}+r*\vektor{b_1-a_1\\b_2-a_2\\b_3-a_3}+s*\vektor{c_1-a_1\\c_2-a_2\\c_3-a_3}[/m], $r,s [mm] \in \IR$. [/mm]

Den Schnittpunkt von $S$ und $E$ ermittelst du nun durch gleichsetzen (und beachte, dass bei $S$ auch $t [mm] \ge [/mm] 0$ gelten muss. Evtl. schneidet der Strahl die Ebene ja gar nicht!).

Hm, wofür die Normale gut sein soll, weiß ich gerade nicht. Kannst du evtl. mal alles konkret angeben? Vielleicht muss man doch die Ebene in Normalenform angeben (dazu braucht man einen Punkt der Ebene und einen Vektor, der senkrecht auf die Ebene steht, wie du vermutlich schon weißt), weil z.B. die Vektoren [mm]\vektor{b_1-a_1\\b_2-a_2\\b_3-a_3}[/mm], [mm]\vektor{c_1-a_1\\c_2-a_2\\c_3-a_3}[/mm] linear abhängig sind und die Ebene daher nicht eindeutig durch die Punkte $A,B,C$ bestimmt ist...

Viele Grüße,
Marcel

Bezug
                
Bezug
Strahl=>Ebene schneiden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 Di 10.05.2005
Autor: tciny

Hi, vielen dank für deine Antwort.
Der praktischste Weg wäre wirklich es über die Normalenform zu lösen. Genug Punkte der Ebene kenne ich ja wiegesagt.
Mir ist nur nicht ganz klar wie ich die Gerade dann mit diesen zwei Angaben schneiden kann (also Normalvektor und Punkt).

Die einzige Lösung die ich bisher im Internet gefunden habe liefert mir nämlich sehr falsche Ergebnisse:
http://www.gamespp.com/algorithms/collisionDetectionTutorial02.html
Danke,

Jan

Bezug
                        
Bezug
Strahl=>Ebene schneiden: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Di 10.05.2005
Autor: Zwerglein

Hi, tciny,

>  Mir ist nur nicht ganz klar wie ich die Gerade dann mit
> diesen zwei Angaben schneiden kann (also Normalvektor und
> Punkt).

Naja: Aus Normalenvektor [mm] \vec{n} [/mm] und Punkt ("Aufpunktvektor" [mm] \vec{p}) [/mm] kannst Du doch ziemlich einfach die Normalenform der Ebene machen:

E:  [mm] \vec{n} \circ (\vec{x} [/mm] - [mm] \vec{p}) [/mm] = 0

Hier setzt Du für [mm] \vec{x} [/mm] die Geradengleichung ein und löst nach dem Parameter t auf; und hieraus lässt sich der gesuchte Schnittpunkt leicht ermitteln!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de