www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Streckenzug Kurvenintegral
Streckenzug Kurvenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Streckenzug Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Mi 20.06.2007
Autor: Darthwader

Hallo

und zwar hab ich keine Ahung wie ich einen Streckenzug parametisieren soll

Bsp:

[mm] \integral_{0,0,0}^{1,1,1}{(x+y+z)dx + (3x+2y-z) dy +(5x-y+z)dz} [/mm]

jetzt soll ich das Kurvenintegral längs eines in (1,0,0) und (1,1,0) gebrochenen Streckenzuges bestimmen

Ich habe leider überhaupt keine Ahnung, wie ich das machen soll, wie finde ich die Gleichung(en) dieser Geraden?

Wenn eine konkrete Funktion gegeben wär, andem das Kurvenintegral längs dran geht, würde ich es ja vll noch hinbekommen...

Hätte jm. nen Tipp, wie ich da vorgehen muss?

        
Bezug
Streckenzug Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 21.06.2007
Autor: Leopold_Gast

Die Strecke von [mm]a[/mm] nach [mm]b[/mm] kann durch

[mm]t \mapsto a + t(b-a) \, , \ \ 0 \leq t \leq 1[/mm]

parametrisiert werden. Und hier hast du nun drei aneinanderhängende Strecken. Du kannst die Integrale einzeln berechnen und dann addieren.

Bezug
                
Bezug
Streckenzug Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:40 Fr 22.06.2007
Autor: Darthwader

danke für deine Antwort


aber bin grade verwirrt, wieso habe ich 3 Strecken?

ich zähle nur 2?

Bezug
                        
Bezug
Streckenzug Kurvenintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:03 Fr 22.06.2007
Autor: Leopold_Gast

[mm]a_1 = (0,0,0) \, , \ \ b_1 = (1,0,0)[/mm]
[mm]a_2 = (1,0,0) \, , \ \ b_2 = (1,1,0)[/mm]
[mm]a_3 = (1,1,0) \, , \ \ b_3 = (1,1,1)[/mm]

Die Integrationsgrenzen zeigen, daß der Streckenzug von [mm](0,0,0)[/mm] nach [mm](1,1,1)[/mm] gehen soll. Zwei Knickpunkte dazwischen führen auf drei Strecken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de