www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - SturmLiouville Eigenwertproble
SturmLiouville Eigenwertproble < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

SturmLiouville Eigenwertproble: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Mo 15.12.2014
Autor: Bushman

Aufgabe
Finden sie alle Eigenwerte der Gleichung: -f''(x) = [mm] \lambda [/mm] f(x) : [mm] x\in(0,\infty) [/mm]
Mit dem Randwert (oder was auch immer das genau ist ^^) f'(0) = [mm] \alpha [/mm] f(0) mit festem [mm] \alpha [/mm] < 0
Zusätzlich soll die Lösungsfunktion / Eigenfunktion [mm] \in L^2(0,\infty) [/mm] sein

Hallo liebes Forum, ich hätte mal wieder ein Problem. Ein Ähnliches wie Sturm Liouville es seinerzeit mal hatten ^^

Das besagte Problem habe ich unter Aufgabenstellung beschrieben.

Mein Ansatz für die Lösungsfunktion ist f(x) = [mm] e^{c*x} [/mm]
mit f'(x) = c* [mm] e^{c*x} [/mm] und f''(x) = [mm] c^2*e^{c*x} [/mm]

Mit dieser seltsamen Randbedingung ergibt das: f'(0) = [mm] \alpha*f(0) [/mm]
c* [mm] e^{c*0} [/mm] =  [mm] \alpha* e^{c*0} [/mm] => c = [mm] \alpha [/mm]

Eingesetzt in die Gleichung ergibt das [mm] e^{\alpha*x}*(\alpha^2+\lambda) [/mm] = 0
Da [mm] e^{\alpha*x} [/mm] keine 0 Stelle besitzt ist die Lösung der Gleichung [mm] \alpha [/mm] = [mm] \pm \wurzel{-\lambda} [/mm] = [mm] \pm [/mm] i * [mm] \wurzel{\lambda} [/mm]
Das führt mich auf die beiden Lösungen f1(x) = [mm] e^{i*\wurzel{\lambda}*x} [/mm] und    f2(x) = [mm] e^{-i*\wurzel{\lambda}*x}. [/mm]
Nach meinen Überlegungen wäre die einzige Möglichkeit eine quadratisch Lebesgue-Integrierbare Lösungsfunktion zu erhalten [mm] \lambda [/mm] = -1 zu setzen.
Dann würde f1(x) = [mm] e^{i^2*x} [/mm] = [mm] e^{-x} [/mm] ergeben. Das Quadrat dieser Funktion ist [mm] e^{-x^2} [/mm] und von dieser Funktion weiß ich, dass sie eine [mm] L^2 [/mm] Funktion ist.

Eine andere Idee wäre die Angabe von [mm] \alpha [/mm] < 0 auszunutzen und [mm] \alpha [/mm] = -a zu setzen. Dann bekomme ich einen Lösungsansatz der Form [mm] e^{-a*x}. [/mm] Diese Lösung ist bestimmt eine [mm] L^2 [/mm] Funktion. Eingesetzt in die Gleichung ergibt das [mm] e^{-a*x}*(a^2+\lambda)=0 [/mm]  =>  [mm] \lambda [/mm] = [mm] -a^2 [/mm] = - [mm] \alpha^2 [/mm]

Meine Frage wäre nun ob irgendetwas von meinen Überlegungen einen Sinn ergibt. Danke ;)

        
Bezug
SturmLiouville Eigenwertproble: Antwort
Status: (Antwort) fertig Status 
Datum: 02:39 Di 16.12.2014
Autor: andyv

Hallo,

über das Quadrat von [mm] $e^{-x}$ [/mm] solltest du vielleicht noch mal nachdenken.


Jedenfalls kann man ein Fundamentalsystem der DGl leicht angeben:

[mm] $\lambda=0$: [/mm] {1,x}
[mm] $\lambda>0$: $\{\sin \sqrt{\lambda}x,\cos\sqrt{\lambda}x\}$ [/mm]
[mm] $\lambda<0$: $\{\exp(\sqrt{-\lambda}x),\exp(-\sqrt{-\lambda}x)\}$ [/mm]

Wie sieht die allgemeine Lösung in den betrachteten Fällen aus?
Benutze dann [mm] $f'(0)=\alpha [/mm] f(0)$.

Liebe Grüße

Bezug
        
Bezug
SturmLiouville Eigenwertproble: Antwort
Status: (Antwort) fertig Status 
Datum: 07:36 Di 16.12.2014
Autor: fred97

Vielleicht sollte man mal klar sagen, worum es geht:

setzen wir [mm] $D:=\{f \in C^2([0, \infty)): f'(0)= \alpha*f(0)\}$ [/mm] , (wobei  [mm] $\alpha [/mm] <0$) und definieren den Differentialoperator

   $T:D [mm] \to [/mm]  C([0, [mm] \infty))$ [/mm] durch  $T(f):=-f''$.

Gesucht sind also die Eigenwerte [mm] \lambda [/mm] und die zugehörigen Eigenfunktionen $f [mm] \in [/mm] D [mm] \setminus\{0\}$ [/mm] von $T$.

Das bedeutet: wir kümmern uns um die Eigenwertaufgabe

  $T(f)= [mm] \lambda*f$ [/mm]







Wir haben also die homogene lineare DGL 2. Ordnung mit konstanten Koeefizienten

(*)  [mm] $f''+\lambda*f=0$ [/mm]

Gesucht ist also [mm] \lambda [/mm] so, dass (*) eine nichttriviale Lösung $ f [mm] \in [/mm] D$ hat .


Das char. Polynom von (*) lautet so: $ [mm] p(\mu)=\mu^2+\lambda [/mm] $

Sei [mm] \mu [/mm] eine Nullstelle von p. Dann ist [mm] f(x)=c*e^{\mu x} [/mm]  für jedes c eine Lösung von (*). Da wir nichttriviale Lösungen von (*) suchen , können wir von c [mm] \ne [/mm] 0 ausgehen.

Aus  $ f'(0) =  [mm] \alpha [/mm] f(0)$ folgt sofort: [mm] \mu= \alpha. [/mm] Und damit:

   $ [mm] \lambda=-\mu^2= [/mm] - [mm] \alpha^2$. [/mm]

Für dieses [mm] \lambda [/mm] ist also

     [mm] f(x)=c*e^{\alpha x} [/mm]   ($c [mm] \ne [/mm] 0$)

eine nichttriviale Lösung der Eigenwertaufgabe.

Diese Lösungsfunktionen sind $ [mm] \in L^2(0,\infty) [/mm] $, denn

     [mm] $\integral_{0}^{\infty}{e^{2*\alpha x} dx}< \infty$. [/mm]

Überzeuge Dich davon !

FRED

Bezug
                
Bezug
SturmLiouville Eigenwertproble: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Di 16.12.2014
Autor: Bushman

Danke, ich glaube ich habe es jetzt richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de