www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Sturm Liouville - EWP
Sturm Liouville - EWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sturm Liouville - EWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 21.06.2014
Autor: Thomas_Aut

Aufgabe
Betrachten Sie nachstehendes Sturm-Liouville Eigenwertproblem und bestimmen sie die Eigenwerte sowieo die Eigenfunktionen

$-(xu')' = [mm] \frac{\lambda}{x}u [/mm] $ mit $u(1)=0, u(e)=0$

Hinweis: Zeigen Sie, dass alle EW positiv sind und bedenken Sie, dass es sich um eine Eulersche - DGL. handelt.

Hallo,


Es wäre super, wenn da jemand drüberschauen könnte.

Wir multiplizieren vorerst beide Seiten mit $u$ und intergrieren über das Intervall $[1,e]$.

$(-xu')' =  [mm] \frac{\lambda}{x}u$, [/mm]
$u(-xu')' =  [mm] \frac{\lambda}{x}u^2$ [/mm]

Wir intergriegen einmal partiell auf [0,e] und erhalten

[mm] $\integral_{0}^{e}{u(-xu')' dx} [/mm] = -xu'u [mm] |_{0}^{e} [/mm] + [mm] \integral_{0}^{e} [/mm] xu'u'dx $ , dies soll nun aber gleich [mm] $\lambda \integral_{0}^{e} \frac{1}{x}u^2dx$ [/mm] sein, also müssen alle [mm] $\lambda [/mm] > 0$ sein, da aufgrund der Bedingungen $u(1)=0, u(e)=0$ , der Ausruck $-xu'u [mm] |_{0}^{e}$ [/mm] = 0 ist und [mm] $\integral_{0}^{e} [/mm] xu'u'dx$ sicherlich immer positiv ist.

Also ist gezeigt, dass alle [mm] $\lambda [/mm] >0$ sind.

Da es sich um eine Eulersche DGL handelt wählen wir:

$u(x) = [mm] x^{a}$ [/mm]
$u'(x) = [mm] ax^{a-1}$ [/mm]
$u''(x) = [mm] a(a-1)x^{a-2}$ [/mm]

Einsetzen liefert:

[mm] $a_{1,2} [/mm] = [mm] \pm [/mm] i [mm] \cdot \sqrt{\lambda}$ [/mm] , an dieser Stelle könnten wir [mm] $\lambda [/mm] = [mm] z^2$ [/mm] setzen und erhalten somit

$a = [mm] \pm i\cdot [/mm] z $

Unsere Lösungen sind damit

[mm] $A\cdot x^{iz} [/mm] + B [mm] \cdot x^{-iz}$ [/mm]

So nun setzen wir in unsere Randbedingungen ein

[mm] $u_{z} [/mm] (0) = 0 $ , also A = -B , da dies Konstanten sind fassen wir das ganze zu , sagen wir $C [mm] \in \mathbb{R}$ [/mm] zusammen.
[mm] $u_{z}(e) [/mm] = 0$, also $C [mm] \cdot (e^{iz} [/mm] - [mm] e^{-iz}) [/mm] = $ , offensichtlich ist dies genau dort 0 wo der Sinus 0 ist, also erhalten wir
[mm] $z_{n} [/mm] = n [mm] \cdot \pi [/mm] $ und damit
[mm] $\lambda_{n} [/mm] = [mm] n^2 \pi^2$ [/mm]

also erhalten wir für die Eigenfunktionen

$u(x) = [mm] x^{i \pi n} [/mm] - [mm] x^{-i \pi n}$ [/mm]


Beste Grüße und Dank

Thomas

        
Bezug
Sturm Liouville - EWP: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Sa 21.06.2014
Autor: MathePower

Hallo Thomas_Aut,

> Betrachten Sie nachstehendes Sturm-Liouville
> Eigenwertproblem und bestimmen sie die Eigenwerte sowieo
> die Eigenfunktionen
>  
> [mm]-(xu')' = \frac{\lambda}{x}u[/mm] mit [mm]u(1)=0, u(e)=0[/mm]
>  
> Hinweis: Zeigen Sie, dass alle EW positiv sind und bedenken
> Sie, dass es sich um eine Eulersche - DGL. handelt.
>  Hallo,
>  
>
> Es wäre super, wenn da jemand drüberschauen könnte.
>  
> Wir multiplizieren vorerst beide Seiten mit [mm]u[/mm] und
> intergrieren über das Intervall [mm][1,e][/mm].
>  
> [mm](-xu')' = \frac{\lambda}{x}u[/mm],
>  [mm]u(-xu')' = \frac{\lambda}{x}u^2[/mm]
>  
> Wir intergriegen einmal partiell auf [0,e] und erhalten
>  
> [mm]\integral_{0}^{e}{u(-xu')' dx} = -xu'u |_{0}^{e} + \integral_{0}^{e} xu'u'dx[/mm]
> , dies soll nun aber gleich [mm]\lambda \integral_{0}^{e} \frac{1}{x}u^2dx[/mm]
> sein, also müssen alle [mm]\lambda > 0[/mm] sein, da aufgrund der
> Bedingungen [mm]u(1)=0, u(e)=0[/mm] , der Ausruck [mm]-xu'u |_{0}^{e}[/mm] =
> 0 ist und [mm]\integral_{0}^{e} xu'u'dx[/mm] sicherlich immer
> positiv ist.
>
> Also ist gezeigt, dass alle [mm]\lambda >0[/mm] sind.
>  
> Da es sich um eine Eulersche DGL handelt wählen wir:
>  
> [mm]u(x) = x^{a}[/mm]
>  [mm]u'(x) = ax^{a-1}[/mm]
>  [mm]u''(x) = a(a-1)x^{a-2}[/mm]
>  
> Einsetzen liefert:
>
> [mm]a_{1,2} = \pm i \cdot \sqrt{\lambda}[/mm] , an dieser Stelle
> könnten wir [mm]\lambda = z^2[/mm] setzen und erhalten somit
>  
> [mm]a = \pm i\cdot z[/mm]
>  
> Unsere Lösungen sind damit
>
> [mm]A\cdot x^{iz} + B \cdot x^{-iz}[/mm]
>  


[ok]


> So nun setzen wir in unsere Randbedingungen ein
>  
> [mm]u_{z} (0) = 0[/mm] , also A = -B , da dies Konstanten sind
> fassen wir das ganze zu , sagen wir [mm]C \in \mathbb{R}[/mm]
> zusammen.
>  [mm]u_{z}(e) = 0[/mm], also [mm]C \cdot (e^{iz} - e^{-iz}) =[/mm] ,
> offensichtlich ist dies genau dort 0 wo der Sinus 0 ist,
> also erhalten wir
>  [mm]z_{n} = n \cdot \pi[/mm] und damit
>  [mm]\lambda_{n} = n^2 \pi^2[/mm]
>
> also erhalten wir für die Eigenfunktionen
>  
> [mm]u(x) = x^{i \pi n} - x^{-i \pi n}[/mm]
>


[ok]


>
> Beste Grüße und Dank
>  
> Thomas


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de