www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Substitutionsmethode
Substitutionsmethode < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitutionsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Do 20.11.2008
Autor: az118

Aufgabe
Lösen Sie mittels Substitutionsmethode: [mm] \integral_{a}^{b} 1/\wurzel{1-x^2}dx [/mm]

Also, ich habe [mm] z=1-x^2 [/mm] gesetzt
dz/dx=-2*x
dx=-(1/2)* dz/x
dann hab ich im Integral [mm] -(1/2)*1/(x*\wurzel{z}) [/mm]
wenn ich das jetzt integriere und die Probe mit der Ableitung mache,stimmt das nicht.Kann mir einer sagen was ich falsch mache?

        
Bezug
Substitutionsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Do 20.11.2008
Autor: reverend

Wie hast Du denn [mm] \a{}-\bruch{1}{2}*\bruch{1}{x*\wurzel{z}} [/mm] integriert? Hast Du dann [mm] x=\wurzel{1-z} [/mm] gesetzt?

Substituier lieber anders.
Wenn [mm] x=\sin{z} [/mm] ist, dann ist [mm] \wurzel{1-x^2} [/mm] doch gleich was?
Probiers mal.

Bezug
                
Bezug
Substitutionsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 20.11.2008
Autor: az118

Aber wie kommst du denn jetzt auf x=sinz?oder war das nur irgendein beispiel?

Bezug
                        
Bezug
Substitutionsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 20.11.2008
Autor: reverend

Nein, das war nicht irgendein Beispiel.
Es ist der Tipp zum Lösen dieses Integrals.
Probiers einfach mal aus.

Wie ich drauf komme? Na, zum einen ist dies eine klassische Aufgabe. Zum andern begegnet einem die Form [mm] \wurzel{1-etwas^2} [/mm] ja bei den trigonometrischen Funktionen häufiger...

Bezug
                
Bezug
Substitutionsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Do 20.11.2008
Autor: az118

also ich setze x=sinz? dann wäre dz/dx=cosz?
Und in das integral eingesetzt [mm] 1/((\wurzel{1-sinz})*cosz)? [/mm]
Versteh das glaube noch nicht wirklich...

Bezug
                        
Bezug
Substitutionsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 20.11.2008
Autor: reverend

Kleiner Denkfehler: [mm] x=\sin{z} \Rightarrow \red{\bruch{dx}{dz}}=\cos{z}, [/mm] also [mm] dx=dz\cos{z}. [/mm]

Wenn Du jetzt noch bedenkst, dass [mm] \wurzel{1-x^2}=\wurzel{1-sin^2z}=\cos{z}, [/mm] dann sollte Dir langsam ein Licht aufgehen.

Bezug
                                
Bezug
Substitutionsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Do 20.11.2008
Autor: az118

hmmm...also muss ich jetzt [mm] [cosz*(1/\wurzel{1-sin^2*z})] [/mm] integrieren?
muss ich für [mm] (1/\wurzel{1-sin^2*z})=cot^2*z [/mm] einsetzen?

Bezug
                                        
Bezug
Substitutionsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Do 20.11.2008
Autor: MathePower

Hallo az118,

> hmmm...also muss ich jetzt [mm][cosz*(1/\wurzel{1-sin^2*z})][/mm]
> integrieren?
>  muss ich für [mm](1/\wurzel{1-sin^2*z})=cot^2*z[/mm] einsetzen?


Diese Gleichung stimmt doch nicht.

[mm]\bruch{1}{\wurzel{1-\sin^{2}\left(z\right)}} \not= \cot\left(z\right)[/mm]

Wende  hier lieber den trigometrischen Pythagoras an, und Du erhältst einen ganz einfachen Integranden.


Gruß
MathePower

Bezug
                                                
Bezug
Substitutionsmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Do 20.11.2008
Autor: az118

aha,also aus [mm] 1=sin(x^2)+cos(x^2) [/mm] folgt [mm] cosx=\wurzel{1-sin(x^2)} [/mm]
und dann steht im integral ja nur 1/cosx und wenn ich das integriere ist das 1/sin=arcsin(x)?

Bezug
                                                        
Bezug
Substitutionsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Do 20.11.2008
Autor: MathePower

Hallo az118,

> aha,also aus [mm]1=sin(x^2)+cos(x^2)[/mm] folgt
> [mm]cosx=\wurzel{1-sin(x^2)}[/mm]
>  und dann steht im integral ja nur 1/cosx und wenn ich das
> integriere ist das 1/sin=arcsin(x)?


Der Integrand ist viel einfacher: [mm]\cos\left(z\right)*\bruch{1}{\cos\left(z\right)}=1[/mm]


Gruß
MathePower

Bezug
                                                                
Bezug
Substitutionsmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Do 20.11.2008
Autor: az118

Ok nun hab ich es endlich verstanden...danke

Bezug
                                                        
Bezug
Substitutionsmethode: falsche Formeln
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Do 20.11.2008
Autor: Al-Chwarizmi


> aha, also aus [mm]1=sin(x^2)+cos(x^2)[/mm] folgt
> [mm]cosx=\wurzel{1-sin(x^2)}[/mm]


Diese Formeln stimmen so natürlich nicht ,
und die zweite folgt auch nicht aus der ersten !!

Schau sie dir nochmal ganz genau an.
(derartige Fehler können nicht als harmlose
Tippfehler durchgehen)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de