www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Substitutionsregel
Substitutionsregel < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Do 02.01.2014
Autor: Kitzng

Aufgabe 1
Berechnen Sie das Integral mithilfe der Substitutionsregel
[mm] \integral_{}^{}{\bruch{x-1}{(1-x)^2} dx} [/mm]

Aufgabe 2
Berechnen Sie das Integral mithilfe der Substitutionsregel
[mm] \integral_{}^{}{x*ln(x^2) dx} [/mm]

Guten Abend!
Ich habe 2 Aufgaben gerechnet, bei denen ich nicht ganz weiter komme (bzw. die ich falsch gerechnet hab):

Aufgabe 1
[mm] \integral_{}^{}{\bruch{x-1}{(1-x)^2} dx} [/mm]

u=1-x

[mm] \bruch {du}{dx} [/mm] = -1

<=> dx = [mm] \bruch [/mm] {du}{-1}

[mm] \integral_{}^{}{\bruch {x-1}{u^2} \bruch {du}{-1}} [/mm]

[mm] -\integral_{}^{}{\bruch {x-1}{u^2} du} [/mm]

Aufgabe 2
[mm] \integral_{}^{}{x*ln(x^2) dx} [/mm]

[mm] u=x^2 [/mm]

[mm] \bruch{du}{dx} [/mm] = 2x

<=> dx= [mm] \bruch{du}{2x} [/mm]

[mm] \integral_{}^{}{x*ln(u) \bruch{du}{2x}} [/mm]

= [mm] \bruch{1}{2} \integral_{}^{}{ln(u) du} [/mm]

= [mm] \bruch{1}{2}x [/mm] * [mm] ln(x^2) [/mm]

Vielen, vielen Dank im Voraus für eure Hilfe!

Viele Grüße
Kitzng

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Substitutionsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Do 02.01.2014
Autor: schachuzipus

Hallo,


> Berechnen Sie das Integral mithilfe der Substitutionsregel
> [mm]\integral_{}^{}{\bruch{x-1}{(1-x)^2} dx}[/mm]
> Berechnen Sie
> das Integral mithilfe der Substitutionsregel
> [mm]\integral_{}^{}{x*ln(x^2) dx}[/mm]
> Guten Abend!
> Ich habe 2 Aufgaben gerechnet, bei denen ich nicht ganz
> weiter komme (bzw. die ich falsch gerechnet hab):

>

> Aufgabe 1
> [mm]\integral_{}^{}{\bruch{x-1}{(1-x)^2} dx}[/mm]

Hier zu substituieren ist, wie mit Kanonen auf Spatzen schießen ;-)

>

> u=1-x

>

> [mm]\bruch {du}{dx}[/mm] = -1

>

> <=> dx = [mm]\bruch[/mm] {du}{-1} [ok]

>

> [mm]\integral_{}^{}{\bruch {x-1}{u^2} \bruch {du}{-1}}[/mm]

>

> [mm]-\integral_{}^{}{\bruch {x-1}{u^2} du}[/mm]

Ja, aber nun hast du 2 Variablen im Integral, das ist nicht gut.

Ersetze noch [mm]x-1[/mm] durch einen Ausdruck in u ...

>

> Aufgabe 2
> [mm]\integral_{}^{}{x*ln(x^2) dx}[/mm]

>

> [mm]u=x^2[/mm]

>

> [mm]\bruch{du}{dx}[/mm] = 2x

>

> <=> dx= [mm]\bruch{du}{2x}[/mm]

>

> [mm]\integral_{}^{}{x*ln(u) \bruch{du}{2x}}[/mm]

>

> = [mm]\bruch{1}{2} \integral_{}^{}{ln(u) du}[/mm] [ok]

>

> = [mm]\bruch{1}{2}x[/mm] * [mm]ln(x^2)[/mm]

Nein, das stimmt nicht: es ist [mm]\int{\ln(u) \ du}=u(\ln(u)-1)[/mm] - das kann man mit partieller Integration machen:

[mm]\int{\ln(u) \ du}=\int{1\cdot{}\ln(u) \ du}=...[/mm]

>

> Vielen, vielen Dank im Voraus für eure Hilfe!

>

> Viele Grüße
> Kitzng

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
                
Bezug
Substitutionsregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Do 02.01.2014
Autor: Kitzng

Hallo schachuzipus!
Erstmal danke für deine Antwort! Ich hätte da aber noch die ein oder andere Frage zu der Lösung.

Zur Aufgabe 1: Wie meinst du das genau? Wie soll ich das denn weg bekommen?

Zur Aufgabe 2: Du hast Recht, aber wie bist du auf die -1 gekommen? Die Aufleitung von ln(x) ist ja x*ln(x)-x...

Bezug
                        
Bezug
Substitutionsregel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Do 02.01.2014
Autor: schachuzipus

Hallo nochmal,

bitte Rückfragen als Fragen stellen!


> Hallo schachuzipus!
> Erstmal danke für deine Antwort! Ich hätte da aber noch
> die ein oder andere Frage zu der Lösung.

>

> Zur Aufgabe 1: Wie meinst du das genau? Wie soll ich das
> denn weg bekommen?

Na, du hast gesetzt: $u=1-x$

Was ist denn dann $x-1$ ausgedrückt in u?

>

> Zur Aufgabe 2: Du hast Recht, aber wie bist du auf die -1
> gekommen? Die Aufleitung

Stammfunktion !! das Unwort Aufl... gibt es nicht, es ist schlicht falsch!

> von ln(x) ist ja x*ln(x)-x...

Ja, und da klammere x aus: [mm] $...=x(\ln(x)-1)$ [/mm]

Gruß

schachuzipus

Bezug
                                
Bezug
Substitutionsregel: aufleiten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Do 02.01.2014
Autor: DieAcht

Hiho,


> Stammfunktion !! das Unwort Aufl... gibt es nicht, es ist schlicht falsch!

Ich stimme zwar zu und finde das auch nicht in Ordnung, aber im Duden finden man das Verb bereits seit geraumer Zeit.
Der Duden ist nur ein privater Wörterbuchverlag und das sollte man nicht vergessen!


([Schul]mathematik) eine Stammfunktion bestimmen

eine Stammfunktion bestimmen
Gebrauch
[Schul]mathematik

Beispiel
ich weiß nicht mehr, wie man aufleitet

[]Quelle

Woher kommt eigentlich das Verb "ableiten"? ;-)

Schönen Gruß
DieAcht

Bezug
                                        
Bezug
Substitutionsregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Do 02.01.2014
Autor: Diophant

Hallo,

> Woher kommt eigentlich das Verb "ableiten"? ;-)

Das ist die entscheidende Frage, welche das Wort 'Aufleiten' als den erbärmlichen Unsinn* entlarvt, den es darstellt. Man leitet Meinungen, Urteile oder auch Erkenntnisse aus irgendwelchen bekannten Tatsachen ab. Das hat wenn überhaupt den sprachlichen Charakter, dass man weggehend von den ursprünglichen Fakten zu neuen Erkenntnissen oder Sichtweisen kommt. Es ist also dieses Verb gemeint im Sinne von 'wegleiten', das Gegenteil müsste also 'zuleiten' und das Substantiv 'Zuleitung' heißen. Das will komischerweise niemand, denn es wäre in Sachen Blödsinn zu offensichtlich.

Leibniz hat den Begriff wohl gewählt, weil man ja eben (damals revolutionärerweise) allein ausgehend von einem funktionalen Zusammenhang plötzlich in der Lage war, daraus Aussagen über das Änderungsverhalten einer dynamischen Größe her- oder eben abzuleiten.

Das ganze entspringt doch nur dieser unsäglichen deutschen Unsitte zur Vereinfachung und Simplifizierung von Zusammenhängen, sprich Lehrer haben angefangen, anstatt den Hauptsatz vernünftig zu erklären 'aufleiten' zu sagen. Das ist und bleibt für mich eine fachpädagogische Bankrotterklärung.

*im Sinne eines vernünftigen und kulturellen Umganges mit der Deutschen Sprache

Gruß, Diophant 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de