www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Subtitution
Subtitution < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Subtitution: Lösungsansatz falsch?
Status: (Frage) beantwortet Status 
Datum: 18:15 Mi 05.11.2008
Autor: Christiank87

Aufgabe
Man löse folgendes Integral mittels Subtitution
[mm] \integral_{a}^{b}{f(x)1/((3-x)*(\wurzel{2-x})) dx} [/mm]
[mm] x=2-t^2 [/mm]

hab folgenden ansatz versucht bin aber gescheitert habe [mm] x=2-t^2 [/mm] nach t umgeformt [mm] t=\wurzel{2-x} [/mm]  dann [mm] dt/dx=-1/\wurzel{2-x} [/mm] dann habe ich nach dx aufgelöst [mm] -dt*\wurzel{2-x} [/mm] und dies dann in die Gleichung eingesetzt jedoch komme ich dann nicht weiter... ist mein ansatz falsch?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Subtitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mi 05.11.2008
Autor: blascowitz

Hallo koenntest du dein gesuchtes Integral mal ein bisschen leserlicher schreiben.

Gesucht ist wohl:

[mm] \integral_{a}^{b}{\bruch{1}{(3-x)(\wurzel{2-x})} dx}. [/mm] Dass soll jetzt mit [mm] $x=2-t^2$ [/mm] geloest werden. Setz mal fuer [mm] $x=2-t^2$ [/mm] ein. Jetzt musst du noch dein $dx$ abaendern. [mm] \bruch{dx}{dt}=-2t. [/mm] Dann ist also $dx=-2t dy$ Interpretiere x mal als funktion von t (so wie sonst f(x) also funktion von x). Und jetzt alles zusammensetzten. Du bekommst dann ein bekanntes Integral heraus. Und am Ende nicht vergessen, zurueck zu substituieren
Einen schoenen Abend  

Bezug
                
Bezug
Subtitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:50 Mi 05.11.2008
Autor: Christiank87

so habe mal für [mm] x=2-t^2 [/mm] eingesetzt und für dx=2t*dt
dann habe ich folgendes raus
[mm] \integral_{a}^{b}{-\bruch{2}{1+t^2} dt} [/mm] ist dies richtig? und dann kann ich -2* noch vor das integral schreiben. Das integral kann man dann sicherlich lösen? muss man wissen was dieses integral ist?

Bezug
                        
Bezug
Subtitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Mi 05.11.2008
Autor: blascowitz


> so habe mal für [mm]x=2-t^2[/mm] eingesetzt und für dx= $-$ 2t*dt

Da hast du ein Minuszeichen vergessen

Ja dann kannst du die $-2$ rausziehen. Kennst du die Ableitung von $Arctan(x)$?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de