www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Summe von Potenzen
Summe von Potenzen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:07 Do 28.07.2011
Autor: rabilein1

Aufgabe
Hier ist mal wieder so eine meiner verrückten Ideen:

Zeigen Sie, dass

[mm] \summe_{n=1}^{\infty}0.5^{4n} [/mm] + [mm] \summe_{n=1}^{\infty}0.5^{4n+1} [/mm] = 0.1

Auf diese Aufgabe bin durch Aufgabe Nr. 813905 (#4 Unfaire Münze) von kamaleonti und dessen Lösung von Al-Chwarizmi gekommen.

Oder anders ausgedrückt: Sofern die Lösung von Al-Chwarizmi richtig ist, dann muss auch die obige Formel richtig sein. Mit seinem Diagramm hat Al-Chwarizmi die Formel quasi schon bewiesen

Aber wie würde man das normalerweise "beweisen" ?

        
Bezug
Summe von Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Do 28.07.2011
Autor: kushkush

Hallo,


stichwort ist summe von geometrischen Reihen



[mm] $\sum_{k=1}^{n} (\frac{1}{2})^{4k} \rightarrow \frac{\frac{1}{16}}{1- \frac{1}{16}}= \frac{1}{15}$ [/mm] für [mm] $n\rightarrow \infty$ [/mm]


[mm] $\sum_{k=1}^{n} (\frac{1}{2})^{4k+1} [/mm] = [mm] \frac{1}{2}\sum_{k=1}^{n}(\frac{1}{2})^{4k} \rightarrow \frac{1}{30}$ [/mm] für $n [mm] \rightarrow \infty$ [/mm]



Gruss
kushkush

Bezug
                
Bezug
Summe von Potenzen: Alles richtig
Status: (Korrektur) kleiner Fehler Status 
Datum: 23:27 Do 28.07.2011
Autor: Diophant

Hallo kushkush,

die Korrekturmitteilung, die hier stand, ist gegenstandslos und beruhte auf einem Lesefehler meineseits.

Gruß, Diophant

Bezug
                
Bezug
Summe von Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:26 Fr 29.07.2011
Autor: rabilein1

Durch Probieren mit diversen Zahlen habe ich rausgefunden, dass

[mm] \summe_{n=1}^{\infty}p^{an+b} [/mm] =  [mm] \bruch{p^{a+b}}{1-p^{a}} [/mm] für a>0 und 0 [mm] \le [/mm] p <1

In obigem Fall wäre p=0.5, a=4 und b=0 bzw. b=1

Gibt es eigentlich Einschränkungen für b ?
Das habe ich nicht mehr untersucht.

Naja, bestimmt ist die obige Formel sowieso schon allgemein bekannt und hunderttausend Mal von Studenten "bewiesen" worden.

Bezug
                        
Bezug
Summe von Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:36 Fr 29.07.2011
Autor: angela.h.b.


> Durch Probieren mit diversen Zahlen habe ich rausgefunden,
> dass
>  
> [mm]\summe_{n=1}^{\infty}p^{an+b}[/mm] =  [mm]\bruch{p^{a+b}}{1-p^{a}}[/mm]
> für a>0 und 0 [mm]\le[/mm] p <1
>  
> In obigem Fall wäre p=0.5, a=4 und b=0 bzw. b=1
>  
> Gibt es eigentlich Einschränkungen für b ?

Hallo,

nein.

Es ist doch [mm] $\summe_{n=1}^{\infty}p^{an+b}$=p^b*$\summe_{n=1}^{\infty}p^{an}$. [/mm]

>  Das habe ich nicht mehr untersucht.
>  
> Naja, bestimmt ist die obige Formel sowieso schon allgemein
> bekannt und hunderttausend Mal von Studenten "bewiesen"
> worden.

Du könntest es unter (unendliche) geometrische  Reihe nachlesen:
Für |q|<1 gilt [mm] \summe_{i=0}^{\infty}q^i=\bruch{1}{1-q}, [/mm] also folglich [mm] \summe_{i=\red{1}}^{\infty}q^i=\bruch{q}{1-q}. [/mm]

Aber das schmälert  ja überhaupt nicht Deine Forschungsleistung!

Gruß v. Angela


Bezug
                                
Bezug
Summe von Potenzen: Zufall ?
Status: (Frage) beantwortet Status 
Datum: 10:54 Fr 29.07.2011
Autor: rabilein1

Ist denn
    
[mm]\bruch{p^{a+b}}{1-p^{a}} [/mm] [mm] \not=[/mm]  [mm]p^b*\summe_{n=1}^{\infty}p^{an}[/mm]

Wenn meine Formel falsch ist, dann wäre das ja reiner Zufall, weil ich dann meine Zahlen zufällig so ausgewählt hätte, das die Formel zufällig hinkommt





Bezug
                                        
Bezug
Summe von Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 Fr 29.07.2011
Autor: fred97


> Ist denn
>      
> [mm]\bruch{p^{a+b}}{1-p^{a}}[/mm] [mm]\not=[/mm]  
> [mm]p^b*\summe_{n=1}^{\infty}p^{an}[/mm]



Nein, es ist [mm]\bruch{p^{a+b}}{1-p^{a}}[/mm] [mm]=[/mm] [mm]p^b*\summe_{n=1}^{\infty}p^{an}[/mm]    für [mm] $|p^a|<1 [/mm]


FRED

>
> Wenn meine Formel falsch ist, dann wäre das ja reiner
> Zufall, weil ich dann meine Zahlen zufällig so ausgewählt
> hätte, das die Formel zufällig hinkommt
>  
>
>
>  


Bezug
                                                
Bezug
Summe von Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Fr 29.07.2011
Autor: rabilein1

Also war meine Formel doch richtig.

Nur hatte ich sie anders formuliert als "üblich"

Bezug
                        
Bezug
Summe von Potenzen: Summenformel
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Fr 29.07.2011
Autor: Al-Chwarizmi


> Durch Probieren mit diversen Zahlen habe ich rausgefunden,
> dass
>  
> [mm]\summe_{n=1}^{\infty}p^{an+b}[/mm] =  [mm]\bruch{p^{a+b}}{1-p^{a}}[/mm]
> für a>0 und 0 [mm]\le[/mm] p <1
>  
> In obigem Fall wäre p=0.5, a=4 und b=0 bzw. b=1
>  
> Gibt es eigentlich Einschränkungen für b ?

Man müsste nur darauf achten, dass im Fall $p=0$ die
Exponenten [mm] a\,n+b [/mm] und $a+b$ nicht negativ werden können,
weil dann die entsprechenden Potenzen nicht definiert
wären. Der Fall $p=0$ ist ja aber ohnehin nicht sonderlich
spannend ...

>  Das habe ich nicht mehr untersucht.
>  
> Naja, bestimmt ist die obige Formel sowieso schon allgemein
> bekannt und hunderttausend Mal von Studenten "bewiesen"
> worden.

Man könnte die Summe so schreiben:

     [mm] $\summe_{n=1}^{\infty}p^{a\,n+b}\ [/mm] =\ [mm] \underbrace{p^b}_K*\summe_{n=1}^{\infty}\left(\underbrace{p^a}_q\right)^n\ [/mm] =\ [mm] K*\underbrace{\summe_{n=1}^{\infty}q^n}_S$ [/mm]

Wichtig ist dabei, dass  [mm] |q|=|p^{a}|<1 [/mm]  ist, damit

     [mm] $\limes_{n\to\infty}q^n\ [/mm] =\ 0$

Dann gilt  $\ S-q*S\ =\ [mm] \summe_{n=1}^{\infty}q^n\ [/mm] -\ [mm] \summe_{n=2}^{\infty}q^n\ [/mm] =\ [mm] \summe_{n=1}^{1}q^n\ [/mm] =\ q$

und damit   $\ S\ =\ [mm] \frac{q}{1-q}$ [/mm] .

Einsetzen liefert dann das Ergebnis

      $\ K*S\ =\ [mm] p^b*\frac{p^{a}}{1-p^{a}}\ [/mm] =\ [mm] \frac{p^{a+b}}{1-p^{a}}$ [/mm]

LG    Al



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de