www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summen!?
Summen!? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen!?: Tipp,Idee und Hilfe
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 24.10.2009
Autor: robi2

hallo ich verzweifle hier total an irgendwelchen fachsimpeleien und weiß beim besten willen nicht, was dort auf meinem zettel steht...ich habe zu dem thema schon ettliches über google gefunden; nur gibt es darüber ganze romane, die weit über das herausgehen, was ich fundiert benötige...
ihr kennts bestimmt: summenzeichen! -  das letzte mal als ich das gesehen habe ist ungefähr 5 jahre her, was ich in diesem fall damit machen soll..daran kann ich mich nicht erinnern...

hier steht: "schreiben sie folgende ausdrücke ohne summenzeichen und vereinfachen sie die ergebnisse"
nun gut!
[mm] \summe_{k=1}^{5}(-1)^{k-1}\bruch{1}{2k-1} [/mm]
ich weiß noch das k=1 in diesem fall die untergrenze ist und 5 die obergrenze...
was mir der ausdruck aber grundsätzlich sagen will, dass müsst ihr mir mal erklären bzw. uns ich bin hier nämlich nicht der einzige

und dann wäre da noch die zweite aufgabe, bei der zwei summenzeichen hintereinander stehen

[mm] \summe_{i=1}^{4}\summe_{j=1}^{i} [/mm] i*j da wüßte ich, dass ich es so umschreiben kann:
[mm] i*\summe_{i=1}^{4}j*\summe_{j=1}^{i} [/mm]

im oberen index des zweiten "summenausdrucks" steht ja das  i - hängt  das denn jetzt im direkten zusammenhang mit dem i der ersten summe?... wenn ja müsste das i der zweiten summe ja immer so groß sein, wie das i der ersten und halt nur bis vier gehen, weil die obergrenze ja  hier die 4 wäre..
naja gut, ich stehe hier wirklich aufm schlauch

bitte also dringlich um hilfe und natürlich danke an die freiwilligen helfer..

gruß
robin

        
Bezug
Summen!?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Sa 24.10.2009
Autor: awakening


> hier steht: "schreiben sie folgende ausdrücke ohne summenzeichen und
> vereinfachen sie die ergebnisse"
> nun gut!
> $ [mm] \summe_{k=1}^{5}(-1)^{k-1}\bruch{1}{2k-1} [/mm] $

[mm] \summe_{k=1}^{5} [/mm] k = 1+2+3+4+5

noch fragen?

> $ [mm] \summe_{i=1}^{4}\summe_{j=1}^{i} [/mm] $ i*j da wüßte ich, dass ich es > so umschreiben kann:
> $ [mm] i\cdot{}\summe_{i=1}^{4}j\cdot{}\summe_{j=1}^{i} [/mm] $

das ist nicht korrekt

Bezug
        
Bezug
Summen!?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Sa 24.10.2009
Autor: abakus


> hallo ich verzweifle hier total an irgendwelchen
> fachsimpeleien und weiß beim besten willen nicht, was dort
> auf meinem zettel steht...ich habe zu dem thema schon
> ettliches über google gefunden; nur gibt es darüber ganze
> romane, die weit über das herausgehen, was ich fundiert
> benötige...
>  ihr kennts bestimmt: summenzeichen! -  das letzte mal als
> ich das gesehen habe ist ungefähr 5 jahre her, was ich in
> diesem fall damit machen soll..daran kann ich mich nicht
> erinnern...
>  
> hier steht: "schreiben sie folgende ausdrücke ohne
> summenzeichen und vereinfachen sie die ergebnisse"
>  nun gut!
>  [mm]\summe_{k=1}^{5}(-1)^{k-1}\bruch{1}{2k-1}[/mm]
>  ich weiß noch das k=1 in diesem fall die untergrenze ist
> und 5 die obergrenze...
>   was mir der ausdruck aber grundsätzlich sagen will, dass
> müsst ihr mir mal erklären bzw. uns ich bin hier nämlich
> nicht der einzige
>  
> und dann wäre da noch die zweite aufgabe, bei der zwei
> summenzeichen hintereinander stehen
>  
> [mm]\summe_{i=1}^{4}\summe_{j=1}^{i}[/mm] i*j da wüßte ich, dass
> ich es so umschreiben kann:
>  [mm]i*\summe_{i=1}^{4}j*\summe_{j=1}^{i}[/mm]

Hallo,
kennst du dich ein wenig mit Programmierung aus?
Diese Doppelsumme besagt in etwa folgendes:

S=0
FOR i=1 to 4
FOR j=1 to i
S=S+i*j
Next j
Next i

Gruß Abakus

>  
> im oberen index des zweiten "summenausdrucks" steht ja das  
> i - hängt  das denn jetzt im direkten zusammenhang mit dem
> i der ersten summe?... wenn ja müsste das i der zweiten
> summe ja immer so groß sein, wie das i der ersten und halt
> nur bis vier gehen, weil die obergrenze ja  hier die 4
> wäre..
>  naja gut, ich stehe hier wirklich aufm schlauch
>  
> bitte also dringlich um hilfe und natürlich danke an die
> freiwilligen helfer..
>  
> gruß
> robin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de