www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Summen
Summen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen: Abschätzung
Status: (Frage) beantwortet Status 
Datum: 16:16 Fr 13.04.2012
Autor: bandchef

Aufgabe
Ich soll die exakte Schranke dieser Summe herausfinden: [mm] $2^{n-3}+\sum_{k=0}^{n-4}(2^k(n-k)^2)$ [/mm]



Meine Lösung:


Abschätzung nach unten:

[mm] $2^{n-3}+\sum_{k=0}^{n-4}(2^0(n-0)^2) [/mm] = ... = [mm] 2^{n-3} [/mm] + [mm] (n^3-3n^2)$ [/mm]


Abschätzung nach oben:

[mm] $2^{n-3}+\sum_{k=0}^{n-4}(2^{n-4}(n-(n-4))^2) [/mm] = ... = [mm] 2^{n-3}+16(n-)\cdot 2^{n-4}$ [/mm]



Wie komm ich da nun auf eine exakte Schranke? Darf man die hinteren Teile (die da so additiv dran hängen) weglassen?

        
Bezug
Summen: was ist gemeint ?
Status: (Antwort) fertig Status 
Datum: 20:32 Fr 13.04.2012
Autor: Al-Chwarizmi


> Ich soll die exakte Schranke dieser Summe herausfinden:
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^k(n-k)^2)[/mm]
>  
>
> Meine Lösung:
>  
> Abschätzung nach unten:
>  
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^0(n-0)^2) = ... = 2^{n-3} + (n^3-3n^2)[/mm]
>  
> Abschätzung nach oben:
>  
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^{n-4}(n-(n-4))^2) = ... = 2^{n-3}+16(n-)\cdot 2^{n-4}[/mm]
>  
> Wie komm ich da nun auf eine exakte Schranke? Darf man die
> hinteren Teile (die da so additiv dran hängen) weglassen?


Hallo bandchef,

was soll mit "exakte Schranke" gemeint sein ?

So etwas wie kleinste obere oder größte untere Schranke ?

Da es sich um eine Summe mit endlich vielen Summanden
handelt, müsste aber beides einfach der exakt berechneten
Summe entsprechen. Es ginge also einfach darum, den
Summenterm zu vereinfachen, falls überhaupt möglich.

Oder sind da doch Grenzwerte involviert, also für [mm] n\to\infty [/mm]  ?
In diesem Fall ist die entstehende Reihe aber wohl ohnehin
divergent ...

LG   Al-Chwarizmi  


Bezug
        
Bezug
Summen: vereinfachte Summe
Status: (Antwort) fertig Status 
Datum: 10:03 Sa 14.04.2012
Autor: Al-Chwarizmi


> Ich soll die exakte Schranke dieser Summe herausfinden:
> [mm]2^{n-3}+\sum_{k=0}^{n-4}(2^k(n-k)^2)[/mm]


Hallo Bandchef,

ich habe mal rasch Mathematica auf den Term angesetzt.
Ergebnis der Vereinfachung (etwas anders notiert als von
Mathematica):

     $\ [mm] 7*2^{n-1}-n^2-4\,n-6\qquad\qquad (n\ge4)$ [/mm]

LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de