www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Summen Beweis
Summen Beweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen Beweis: Korrektur, Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:27 So 13.11.2016
Autor: sinnlos123

Aufgabe
Für einen Körper [mm] K,x\in [/mm] K und [mm] n\in\mathbb{N}_0 [/mm] sei [mm] x^n [/mm] rekursiv durch [mm] x^0:=1, x^{n+1}:=x*x^n [/mm] definiert und das Summenzeichen als [mm] \sum_{k=0}^{0}f(k):=0, \sum_{k=0}^{n+1}:=f(n+1)+\sum_{k=0}^{n}f(k). [/mm]
Zeigen Sie für [mm] n\in\mathbb{N}_0 [/mm] und [mm] x\not=1 $$\sum_{k=0}^{n}x^k=\frac{x^{n+1}-1}{x-1}$$ [/mm]

Zu zeigen: für alle [mm] $n\in\mathbb{N}_0$ [/mm] und [mm] $1\not=x\in\mathbb{K}$ [/mm] gilt: [mm] $$\sum_{k=0}^{n}x^k=\frac{x^{n+1}-1}{x-1}$$ [/mm]
[mm] \underline{Induktionsanfang} [/mm]
n=0
[mm] $$\sum_{k=0}^{0}x^k=x^0=1$$ $$\frac{x^1-1}{x-1}=1$$ [/mm]
[mm] \underline{Induktionsvoraussetzung} [/mm]
Für ein n=j gilt [mm] $$\sum_{k=0}^{j}x^k=\frac{x^{j+1}-1}{x-1}$$ [/mm]
[mm] \underline{Induktionsbehauptung} [/mm]
Für n=j+1 gilt [mm] $$\sum_{k=0}^{j+1}x^k=\frac{x^{j+2}-1}{x-1}$$ [/mm]
[mm] \underline{Induktionsschritt} [/mm]
Sei $n=j+1$
Es ist [mm] $$\sum_{k=0}^{j+1}x^k=x^{j+1}+\sum_{k=0}^{j}x^k$$ [/mm]
Nun setzen wir die Induktionsvoraussetzung ein und erhalten
[mm] $$x^{j+1}+\frac{x^{j+1}-1}{x-1}$$ [/mm]
[mm] $$=\frac{x-1}{x-1}x^{j+1}+\frac{x^{j+1}-1}{x-1}$$ [/mm]
[mm] $$=\frac{(x-1)x^{j+1}+x^{j+1}-1}{x-1}$$ [/mm]
[mm] $$=\frac{x^{j+2}-x^{j+1}+x^{j+1}-1}{x-1}$$ [/mm]
[mm] $$=\frac{x^{j+2}-1}{x-1}$$ [/mm]
q.e.d.

Ist ein Tipfehler in der zitierten Aufgabe? Sie ist genauso wie ich sie gestellt bekomme, aber für mich macht die Definition [mm] $\sum_{k=0}^{0}f(k):=0$ [/mm] keinen Sinn.

Ansonsten bitte sagen ob der Beweis ok ist.

        
Bezug
Summen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 So 13.11.2016
Autor: tobit09

Hallo sinnlos123!


> Ist ein Tipfehler in der zitierten Aufgabe? Sie ist genauso
> wie ich sie gestellt bekomme, aber für mich macht die
> Definition [mm]\sum_{k=0}^{0}f(k):=0[/mm] keinen Sinn.

Du hast Recht. Es soll sicherlich [mm] $\sum_{k=0}^{0}f(k):=f(0)$ [/mm] heißen.


> Ansonsten bitte sagen ob der Beweis ok ist.

[ok] Alles bestens! :-)


Viele Grüße
Tobias

Bezug
                
Bezug
Summen Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 So 13.11.2016
Autor: sinnlos123

Danke Tobias!

Wo kommt denn eigentlich zu tragen, dass [mm] x\in [/mm] K ist? (im Beweis mein ich)

Das [mm] x\not=1 [/mm] ist, sieht man ja sofort, aber was wäre wenn [mm] x\not\in [/mm] K ist?

Gruß
Jan

Bezug
                        
Bezug
Summen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 13.11.2016
Autor: tobit09


> Wo kommt denn eigentlich zu tragen, dass [mm]x\in[/mm] K ist? (im
> Beweis mein ich)
>  
> Das [mm]x\not=1[/mm] ist, sieht man ja sofort, aber was wäre wenn
> [mm]x\not\in[/mm] K ist?

Schon in der Behauptung wird summiert, subtrahiert, multipliziert und dividiert.
Die wohl vertrauteste algebraische Struktur, in der dies möglich ist, ist die eines Körpers.
Was sollten die Summen, Differenzen, Produkte und Quotienten bedeuten, wenn [mm] $x\notin [/mm] K$ wäre?

Bezug
                                
Bezug
Summen Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 So 13.11.2016
Autor: sinnlos123

Hallo Tobias,

Ah ok, das macht natürlich Sinn.

Beziehungsweise: wenn [mm] $x\not\in [/mm] K$, dann machen die Operationen keinen Sinn.

Beziehungsweise die Aussage erhebt ja garnicht den Anspruch etwas darüber auszusagen. Und das ist der Punkt oder?

Gruß
Jan

Bezug
                                        
Bezug
Summen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Mo 14.11.2016
Autor: DieAcht

Hallo sinnlos123!


> Beziehungsweise: wenn [mm]x\not\in K[/mm], dann machen die
> Operationen keinen Sinn.

Auf was willst Du hinaus? "Woher" ist denn [mm] $x\$, [/mm] wenn [mm] $x\$ [/mm] selbst kein Element aus [mm] $K\$ [/mm] ist? ;-)

> Beziehungsweise die Aussage erhebt ja garnicht den Anspruch
> etwas darüber auszusagen. Und das ist der Punkt oder?

Richtig. Tobias hat es auf den Punkt gebracht:

> Schon in der Behauptung wird summiert, subtrahiert, multipliziert und dividiert.
> Die wohl vertrauteste algebraische Struktur, in der dies möglich ist, ist die eines Körpers.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de