www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summen berechnen
Summen berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Fr 23.04.2010
Autor: Help23

Aufgabe
Berechnen sie folgende Ausdrücke:

[mm] a)\summe_{k=1}^{10}5k+\summe_{k=1}^{10}k [/mm]

[mm] b)\summe_{j=-2}^{2}j^2 [/mm]

[mm] c)\summe_{k=3}^{5}(2^k-1) [/mm]

[mm] d)\summe_{k=1}^{3}(\summe_{j=1}^{k}kj) [/mm]

Hey!!

Also, die ersten 3 Aufgaben habe ich so gelöst

a) [mm] a)\summe_{k=1}^{10}5k+\summe_{k=1}^{10}k [/mm]
= (5*1 + 5*2 + 5*3 + 5*4 + 5*5 + 5*6 + 5*7 + 5*8 + 5*9 + 5*10) + (1+2+3+4+5+6+7+8+9+10)
=275 + 55
=330

[mm] b)\summe_{j=-2}^{2}j^2 [/mm]
[mm] =(-2)^2 [/mm] + [mm] (-1)^2 [/mm] + [mm] 0^2 [/mm] + [mm] 1^2 [/mm] + [mm] 2^2 [/mm]
=10

[mm] c)\summe_{k=3}^{5}(2^k-1) [/mm]

[mm] =(2^3-1) [/mm] + [mm] (2^4-1) [/mm] + [mm] (2^5-1) [/mm]

=53

Bei d) bin ich leider etwas überfragt

Wenn ich erstmal nur die erste Summe betrachte steht da schon mal 6, aber was mache ich mit dem 2. Term?????
Wie soll ich das denn von 1 - k laufen lassen???

        
Bezug
Summen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Fr 23.04.2010
Autor: abakus


> Berechnen sie folgende Ausdrücke:
>  
> [mm]a)\summe_{k=1}^{10}5k+\summe_{k=1}^{10}k[/mm]
>  
> [mm]b)\summe_{j=-2}^{2}j^2[/mm]
>  
> [mm]c)\summe_{k=3}^{5}(2^k-1)[/mm]
>  
> [mm]d)\summe_{k=1}^{3}(\summe_{j=1}^{k}kj)[/mm]
>  Hey!!
>  
> Also, die ersten 3 Aufgaben habe ich so gelöst
>  
> a) [mm]a)\summe_{k=1}^{10}5k+\summe_{k=1}^{10}k[/mm]
> = (5*1 + 5*2 + 5*3 + 5*4 + 5*5 + 5*6 + 5*7 + 5*8 + 5*9 +
> 5*10) + (1+2+3+4+5+6+7+8+9+10)
>  =275 + 55
>  =330
>  
> [mm]b)\summe_{j=-2}^{2}j^2[/mm]
>  [mm]=(-2)^2[/mm] + [mm](-1)^2[/mm] + [mm]0^2[/mm] + [mm]1^2[/mm] + [mm]2^2[/mm]
> =10
>  
> [mm]c)\summe_{k=3}^{5}(2^k-1)[/mm]
>  
> [mm]=(2^3-1)[/mm] + [mm](2^4-1)[/mm] + [mm](2^5-1)[/mm]
>  
> =53
>  
> Bei d) bin ich leider etwas überfragt
>  
> Wenn ich erstmal nur die erste Summe betrachte steht da
> schon mal 6, aber was mache ich mit dem 2. Term?????
>  Wie soll ich das denn von 1 - k laufen lassen???

Halo,
in "ersten Durchlauf" ist das k vom äußeren Summenzeichen 1, und j läuft somit von 1 bis 1.
Im zweiten Durchlauf ist k mittlerweile 2 geworden, und j läuft von 1 bis 2.
Im dritten Durchlauf gilt k=3, also läuft j von 1 bis 3.
Die Gesamtsumme ist
(1*1)+(2*1+2*2)+(3*1+3*2+3*3).
Gruß Abakus


Bezug
                
Bezug
Summen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Fr 23.04.2010
Autor: Help23

Hey! So wirklich verstehe ich das noch nicht...heißt dass mein komplettes Ergebnis für d lautet 31????

Ich verstehe auch noch nicht, warum im dritten durchlauf k=1 isr und nicht 3 wird, wie k im 2. Durchlauf 2 wid.....

Folgt das einem bestimmten Gesetz oder Regel, sodass ich das nachschauen kann.......

LG

Bezug
                        
Bezug
Summen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Fr 23.04.2010
Autor: Arcesius

Hallo

> Hey! So wirklich verstehe ich das noch nicht...heißt dass
> mein komplettes Ergebnis für d lautet 31????

Wie kommst du dareuf? Rechne nochmals nach..

>  
> Ich verstehe auch noch nicht, warum im dritten durchlauf
> k=1 isr und nicht 3 wird, wie k im 2. Durchlauf 2 wid.....

Abakus hat mittlerweile seinen Beitrag korrigiert und geschrieben, dass k im dritten Durchlauf 3 ist!
Du liegst also richtig :)

>  
> Folgt das einem bestimmten Gesetz oder Regel, sodass ich
> das nachschauen kann.......
>  
> LG

Grüsse, Amaro

Bezug
                                
Bezug
Summen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Fr 23.04.2010
Autor: Help23

Also..auf mein Ergebnis bin ich deshalb gekommen, weil

[mm] \summe_{k=1}^{3} [/mm] = 6

und addiert mit dem Term aus der Klammer [mm] \summe_{j=1}^{k}kj...... [/mm]

0hhhh...oder muss ich das multiplizieren.....wohl eher, oder :-)


Dann wäre mein Ergenis 150

Bezug
                                        
Bezug
Summen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Fr 23.04.2010
Autor: Arcesius

Hey

> Also..auf mein Ergebnis bin ich deshalb gekommen, weil
>
> [mm]\summe_{k=1}^{3}[/mm] = 6
>
> und addiert mit dem Term aus der Klammer
> [mm]\summe_{j=1}^{k}kj......[/mm]

Du musst diese Summe nicht separat ausrechnen! Du kannst nicht einfach trennen...

Aber abakus hat dir in seinem Beitrag ja erklärt, was die Summe schliesslich ist! Lies das nochmals durch ;)

>  
> 0hhhh...oder muss ich das multiplizieren.....wohl eher,
> oder :-)
>  
> Dann wäre mein Ergenis 150

Ne, stimmt wieder nicht.. aber die Lösung ist ein Faktor dieser Zahl ;)

Grüsse, Amaro

Bezug
                                                
Bezug
Summen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Fr 23.04.2010
Autor: Help23

Ok, also heißt das mein Gesamtergebnis ist 25 und ich benutze den ersten Term nur dazu, dass er mir angibt, von wo bis wo mein Laufindex geht??????

Sonst kapier ich das grad gar nich..... :-(

Bezug
                                                        
Bezug
Summen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Fr 23.04.2010
Autor: Karl_Pech

Hallo Help23,


Es geht dir jetzt um die Summe [mm]\textstyle\sum_{k=1}^3{\left(\sum_{j=1}^k{kj}\right)}[/mm], oder? Falls ja, so beachte, daß [mm]k\![/mm] nicht von [mm]j\![/mm] abhängt. Deswegen können wir [mm]k\![/mm] aus der inneren Summe "herausziehen": [mm]\textstyle\sum_{k=1}^3{\left(k\textcolor{magenta}{\sum_{j=1}^k{j}}\right)}[/mm]. Nun gilt nach der []Faulhaberschen Formel: [mm]\textstyle\textcolor{magenta}{\sum_{j=1}^k{j}=\frac{k(k+1)}{2}}[/mm]. Also: [mm]\textstyle\sum_{k=1}^3{\frac{k^2(k+1)}{2}}=\frac{1}{2}\left(\sum_{k=1}^3{k^3}+\sum_{k=1}^3{k^2}\right)[/mm]. Wieder nach Faulhabers Formel ist das gleich [mm]\textstyle\frac{1}{2}\left(\left(\frac{3^2 + 3}{2}\right)^2 + \frac{3(3+1)(2\cdot{}3+1)}{6}\right)=25[/mm].



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de