www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summenberechnung
Summenberechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summenberechnung: Idee und Fehler
Status: (Frage) beantwortet Status 
Datum: 20:04 Do 24.11.2011
Autor: clemenum

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Man berechne $S:= \sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2}.$
Sie können dazu alle möglichen Methoden aus der reellen Analysis einer Veränderlichen verwenden!

Meine Idee:
Ich approximiere $f(x) = x^2,$ $-\pi\le x \le \pi$  durch eine Fourier-Reihe:

Da es sich offenbar um eine gerade Funktion handelt, kann ich die $b_n$ vernachlässigen.
Also berechne ich:
$a_n = \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} x^2 cos(nx) dx = \frac{2(2n(cos(n\pi)\pi)}{n^3\pi} = \frac{4\cdot (-1)^n }{n^2} $

$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2 \pi ^2 }{3}$
Daraus folgt:
$f(x) = \frac{\pi^2}{3} + \sum_{n = 1 }^{\infty} \left( \frac{4(-1)^n } {n^2 }cos(nx) \right) =  \frac{\pi^2}{3} + 4\sum_{n = 1 }^{\infty}\left ( \frac{(-1)^n } {n^2 }cos(nx) \right).$

Ich setze nun $x : = 2 \pi$   "rechts und links" und erhalte $4\pi^2 =  \frac{\pi^2}{3} + 4\sum_{n = 1 }^{\infty} \left( \frac{(-1)^n } {n^2 }\cdot 1 \right). $
also  $ S = \frac{11\pi^2} {12} $

Es entspricht aber nicht meinem vermutetet Wert von $0,822467...$

In der Fourierentwickung ist doch mein $S$ vorgekommen, warum stimmt dies nun nicht mit dem Ergebnis überein? Habe ich damit etwa eine Lücke in der Fouriertheorie entdeckt?!?!?  

        
Bezug
Summenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Do 24.11.2011
Autor: MathePower

Hallo clemenum,

> Man berechne [mm]S:= \sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^2}.[/mm]
>  
> Sie können dazu alle möglichen Methoden aus der reellen
> Analysis einer Veränderlichen verwenden!
>  Meine Idee:
>  Ich approximiere [mm]f(x) = x^2,[/mm] [mm]-\pi\le x \le \pi[/mm]  durch eine
> Fourier-Reihe:
>  
> Da es sich offenbar um eine gerade Funktion handelt, kann
> ich die [mm]b_n[/mm] vernachlässigen.
>  Also berechne ich:
>  [mm]a_n = \frac{1}{\pi} \cdot \int_{-\pi}^{\pi} x^2 cos(nx) dx = \frac{2(2n(cos(n\pi)\pi)}{n^3\pi} = \frac{4\cdot (-1)^n }{n^2}[/mm]
>
> [mm]a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2 \pi ^2 }{3}[/mm]
> Daraus folgt:
>  [mm]f(x) = \frac{\pi^2}{3} + \sum_{n = 1 }^{\infty} \left( \frac{4(-1)^n } {n^2 }cos(nx) \right) = \frac{\pi^2}{3} + 4\sum_{n = 1 }^{\infty}\left ( \frac{(-1)^n } {n^2 }cos(nx) \right).[/mm]
>
> Ich setze nun [mm]x : = 2 \pi[/mm]   "rechts und links" und erhalte
> [mm]4\pi^2 = \frac{\pi^2}{3} + 4\sum_{n = 1 }^{\infty} \left( \frac{(-1)^n } {n^2 }\cdot 1 \right).[/mm]
>  
> also  [mm]S = \frac{11\pi^2} {12}[/mm]
>
> Es entspricht aber nicht meinem vermutetet Wert von
> [mm]0,822467...[/mm]
>
> In der Fourierentwickung ist doch mein [mm]S[/mm] vorgekommen, warum
> stimmt dies nun nicht mit dem Ergebnis überein? Habe ich
> damit etwa eine Lücke in der Fouriertheorie entdeckt?!?!?  
>  


[mm]x=2*\pi[/mm] darfst Du nicht einsetzen, da die Funktion [mm]x^{2}[/mm]
nur auf [mm] -\pi \le x \le \pi[/mm]  definiert ist.

Setze x=0 ein, dann kommst Du auf das gewünschte Ergebnis.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de