Summierte Quadraturformel < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] f:[0,2*\pi] \in [/mm] x -> sin(x) und das Integral [mm] \int_0^{2\pi} \! [/mm] f(x) [mm] \, [/mm] dx werde durch die summierte Sehnentrapez- und die summierte Simpsonformel approximiert. Wie klein muss die Schrittweite h jeweils gewählt werden, um mit Hilfe der jeweiligen Restgliedabschätzungen sichern zu können, dass der Quadraturfehler weniger als 1/100000 beträgt? |
Hi,
i) Sehnentrapezformel:
$ |E(f)| [mm] \leq (b-a)*h^{2}/12 [/mm] * max [mm] |f^{(2)}(x)|, a\leq x\leq [/mm] b [mm] \Rightarrow 2*\pi *h^{2}/12 [/mm] * max |-sin(x)|= [mm] \pi* h^{2}/ [/mm] 6 [mm] \leq [/mm] 1/100000 [mm] \Leftarrow\Rightarrow h^{2} \leq \frac{3}{10000\pi } \Leftarrow\Rightarrow [/mm] h [mm] \leq \frac{1}{100}*\frac{\sqrt{6}}{\sqrt{\pi}} \leq \frac{1}{100} [/mm] $
Also muss die Schrittweite kleiner als [mm] \bruch{1}{100} [/mm] sein.
ii) Simponsformel
[mm] |E(f)|\leq (b-a)*h^{4}/2880 [/mm] * max [mm] |f^{(4)}(x)|, a\leq x\leq [/mm] b [mm] \Rightarrow 2\pi [/mm] * [mm] h^{4}/2880 \leq \bruch{1}{10000}\Leftarrow\Rightarrow h^{4} \leq \frac{2880}{10000*2*\pi}=\frac{18}{125*\pi} \Leftarrow\Rightarrow [/mm] h [mm] \leq [/mm] 0.389
ich denke zwar nicht, dass es richtig ist ^^ aber ich hoffe ihr könnt mir helfen :)
LG
|
|
|
|
Hallo Striker_03,
> Sei [mm]f:[0,2*\pi] \in[/mm] x -> sin(x) und das Integral
> [mm]\int_0^{2\pi} \![/mm] f(x) [mm]\,[/mm] dx werde durch die summierte
> Sehnentrapez- und die summierte Simpsonformel approximiert.
> Wie klein muss die Schrittweite h jeweils gewählt werden,
> um mit Hilfe der jeweiligen Restgliedabschätzungen sichern
> zu können, dass der Quadraturfehler weniger als 1/100000
> beträgt?
> Hi,
>
> i) Sehnentrapezformel:
> [mm]|E(f)| \leq (b-a)*h^{2}/12 * max |f^{(2)}(x)|, a\leq x\leq b \Rightarrow 2*\pi *h^{2}/12 * max |-sin(x)|= \pi* h^{2}/ 6 \leq 1/100000 \Leftarrow\Rightarrow h^{2} \leq \frac{3}{10000\pi } \Leftarrow\Rightarrow h \leq \frac{1}{100}*\frac{\sqrt{6}}{\sqrt{\pi}} \leq \frac{1}{100}[/mm]
>
> Also muss die Schrittweite kleiner als [mm]\bruch{1}{100}[/mm]
> sein.
>
> ii) Simponsformel
> [mm]|E(f)|\leq (b-a)*h^{4}/2880[/mm] * max [mm]|f^{(4)}(x)|, a\leq x\leq[/mm]
> b [mm]\Rightarrow 2\pi[/mm] * [mm]h^{4}/2880 \leq \bruch{1}{10000}\Leftarrow\Rightarrow h^{4} \leq \frac{2880}{10000*2*\pi}=\frac{18}{125*\pi} \Leftarrow\Rightarrow[/mm]
> h [mm]\leq[/mm] 0.389
>
Hier hast Du mit einer anderen Fehlerschranke gerechnet.
Damit stimmt dieses Ergebnis nicht.
Deine Ergebnisse sind zu grob.
Will heissen,auch mit einem kleineren h wird
die geforderte Fehlerschranke überschritten.
Ermittle das h zuerst exakt, bevor Du es abschätzt
> ich denke zwar nicht, dass es richtig ist ^^ aber ich hoffe
> ihr könnt mir helfen :)
>
> LG
Gruss
MathePower
|
|
|
|