www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Superoptimalität
Superoptimalität < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Superoptimalität: Hilfestellung, Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 17:18 Mo 13.02.2012
Autor: Marcel08

Hallo!


In alten Unterlagen zum Operations Research stoße ich soeben auf die folgende Stelle:


"Welche Relation besteht zwischen primalem und dualem Simplex-Algorithmus?

Dualer Simplex-Algorithmus ist Spiegelbild des primalen: Während der primale Simplex mit zulässigen suboptimalen Basislösungen arbeitet und sich in Richtung der optimalen Lösung bewegt, indem er den Optimalitätstest zu erfüllen versucht, arbeitet der duale Simplex mit unzulässigen superoptimalen Basislösungen und arbeitet sich in Richtung der Optimalität, indem er die Zulässigkeit anstrebt."



Ich würde nun gerne wissen, was man sich in diesem Zusammenhang unter dem Begriff der "Superoptimalität" vorstellen kann? Wenn er im Prinzip das Gegenteil von "Suboptimalität" beschreibt, wie kann man sich eine Lösung vorstellen, die dann optimaler als optimal sein muss?





Viele Grüße, Marcel


        
Bezug
Superoptimalität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Di 14.02.2012
Autor: Stoecki

ich kenne leider deinen kenntnisstand nicht, allerdings hat das was mit dem grundprinzip von primalen und deren dualen optimierungsproblemen zu tun. betrachte das folgende lp:

max [mm] c^T [/mm] x
s.d. Ax = b
x [mm] \ge [/mm] 0

und das duale lp min [mm] y^T [/mm] b
s.d. [mm] y^T [/mm] A [mm] \ge c^T [/mm]

dann gilt folgende ungleichungskette für alle zulässigen x und y:

[mm] y^T [/mm] b = [mm] y^T [/mm] A x [mm] \ge c^T [/mm] x

damit erzeugt jedes für das duale problem zulässige y eine obere schranke an den optimalen zielfuntionswert. man kann nun aus einer dualen lösung eine zugehörige primale lösung berechnen. im dualen simplex ist diese primale lösung allerdings bei dualer zulässigkeit nicht unbedingt auch primal zulässig (wäre sie es, wäre sie auch optimal). den begriff superoptimal habe ich in der form zwar nicht gehört, allerdings muss es sich dabei um die dualen basislösungen handeln, die einfach eine obere schranke an den zielfunktionswert liefern.

ich hoffe das hilft dir weiter.

gruß bernhard



Bezug
                
Bezug
Superoptimalität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Di 14.02.2012
Autor: Marcel08

Hallo!


> ich kenne leider deinen kenntnisstand nicht, allerdings hat
> das was mit dem grundprinzip von primalen und deren dualen
> optimierungsproblemen zu tun. betrachte das folgende lp:
>  
> max [mm]c^T[/mm] x
>  s.d. Ax = b
>  x [mm]\ge[/mm] 0
>  
> und das duale lp min [mm]y^T[/mm] b
>  s.d. [mm]y^T[/mm] A [mm]\ge c^T[/mm]
>  
> dann gilt folgende ungleichungskette für alle zulässigen
> x und y:
>  
> [mm]y^T[/mm] b = [mm]y^T[/mm] A x [mm]\ge c^T[/mm] x
>  
> damit erzeugt jedes für das duale problem zulässige y
> eine obere schranke an den optimalen zielfuntionswert. man
> kann nun aus einer dualen lösung eine zugehörige primale
> lösung berechnen. im dualen simplex ist diese primale
> lösung allerdings bei dualer zulässigkeit nicht unbedingt
> auch primal zulässig (wäre sie es, wäre sie auch
> optimal). den begriff superoptimal habe ich in der form
> zwar nicht gehört, allerdings muss es sich dabei um die
> dualen basislösungen handeln, die einfach eine obere
> schranke an den zielfunktionswert liefern.


Diesen Zusammenhang erkenne ich im sogenannten Einschließungssatz wieder. Vielen Dank!



> ich hoffe das hilft dir weiter.
>  
> gruß bernhard





Viele Grüße, Marcel


Bezug
                        
Bezug
Superoptimalität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:27 Di 14.02.2012
Autor: Stoecki


> Hallo!
>  
>
> > ich kenne leider deinen kenntnisstand nicht, allerdings hat
> > das was mit dem grundprinzip von primalen und deren dualen
> > optimierungsproblemen zu tun. betrachte das folgende lp:
>  >  
> > max [mm]c^T[/mm] x
>  >  s.d. Ax = b
>  >  x [mm]\ge[/mm] 0
>  >  
> > und das duale lp min [mm]y^T[/mm] b
>  >  s.d. [mm]y^T[/mm] A [mm]\ge c^T[/mm]
>  >  
> > dann gilt folgende ungleichungskette für alle zulässigen
> > x und y:
>  >  
> > [mm]y^T[/mm] b = [mm]y^T[/mm] A x [mm]\ge c^T[/mm] x
>  >  
> > damit erzeugt jedes für das duale problem zulässige y
> > eine obere schranke an den optimalen zielfuntionswert. man
> > kann nun aus einer dualen lösung eine zugehörige primale
> > lösung berechnen. im dualen simplex ist diese primale
> > lösung allerdings bei dualer zulässigkeit nicht unbedingt
> > auch primal zulässig (wäre sie es, wäre sie auch
> > optimal). den begriff superoptimal habe ich in der form
> > zwar nicht gehört, allerdings muss es sich dabei um die
> > dualen basislösungen handeln, die einfach eine obere
> > schranke an den zielfunktionswert liefern.
>
>
> Diesen Zusammenhang erkenne ich im sogenannten
> Einschließungssatz wieder. Vielen Dank!

ich kenne es einfach als schwache dualität ;-)


>  
>
>
> > ich hoffe das hilft dir weiter.
>  >  
> > gruß bernhard
>  
>
>
>
>
> Viele Grüße, Marcel
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de