www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Supremum der Schnittmenge
Supremum der Schnittmenge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum der Schnittmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Do 07.02.2013
Autor: Paivren

Hey Leute, nächste Woche ist Analysis I - Prüfung und ich bemühe mich, noch einige Aufgaben zu rechnen. Leider ohne vorliegende Lösung, weshalb es cool wäre, wenn mich jemand sofern nötig korrigieren könnte:

zu zeigen:  für M [mm] \cap [/mm] N [mm] \not= \emptyset [/mm] ist sup{M [mm] \cap [/mm] N } [mm] \le [/mm] min{sup M, sup N}

meine Idee:
1. Fall: sup M > sup N
Dann existiert ein [mm] x_{0}\in [/mm] M mit [mm] x_{0}>x [/mm] für alle x [mm] \in [/mm] N.
Dann ist [mm] x_{0} [/mm] obere Schranke von N, also gilt sup M [mm] \ge x_{0} [/mm] > sup N.
Es gibt also Elemente [mm] x_{0}, [/mm] die in M, nicht aber in N liegen. Da M [mm] \cap [/mm] N [mm] \not= \emptyset [/mm] gilt dann:
sup [mm] M\gex_{0}>supN\gex [/mm] für alle x [mm] \in [/mm] M [mm] \cap [/mm] N.
Dann gilt für jene x: [mm] x\le [/mm] sup (M [mm] \cap [/mm] N) = sup N

Analog mach ich das für den zweiten Fall: Sup N < Sup M
und der dritte Fall M=N ist ja trivial.


Ist das so in etwa richtig gedacht??


Gruß

        
Bezug
Supremum der Schnittmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 07.02.2013
Autor: fred97


> Hey Leute, nächste Woche ist Analysis I - Prüfung und ich
> bemühe mich, noch einige Aufgaben zu rechnen. Leider ohne
> vorliegende Lösung, weshalb es cool wäre, wenn mich
> jemand sofern nötig korrigieren könnte:
>  
> zu zeigen:  für M [mm]\cap[/mm] N [mm]\not= \emptyset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist sup{M [mm]\cap[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

N

> } [mm]\le[/mm] min{sup M, sup N}
>
> meine Idee:
>  1. Fall: sup M > sup N

>  Dann existiert ein [mm]x_{0}\in[/mm] M mit [mm]x_{0}>x[/mm] für alle x [mm]\in[/mm]
> N.
>  Dann ist [mm]x_{0}[/mm] obere Schranke von N, also gilt sup M [mm]\ge x_{0}[/mm]
> > sup N.
>  Es gibt also Elemente [mm]x_{0},[/mm] die in M, nicht aber in N
> liegen. Da M [mm]\cap[/mm] N [mm]\not= \emptyset[/mm] gilt dann:
> sup [mm]M\gex_{0}>supN\gex[/mm] für alle x [mm]\in[/mm] M [mm]\cap[/mm] N.


Das verstehe ich nicht !!!


>  Dann gilt für jene x: [mm]x\le[/mm] sup (M [mm]\cap[/mm] N) = sup N
>  
> Analog mach ich das für den zweiten Fall: Sup N < Sup M
>  und der dritte Fall M=N ist ja trivial.
>  
>
> Ist das so in etwa richtig gedacht??

Es ist sehr undurchsichtig !!

Wir setzen s:= min{sup M, sup N}

Du mußt doch nur zeigen, dass s eine obere Schranke von M [mm] \cap [/mm] N ist.

Denn dann ist sup( M [mm] \cap [/mm] N ) [mm] \le [/mm] s

Sei also x [mm] \in [/mm] M [mm] \cap [/mm] N . Dann ist x [mm] \in [/mm] M und x [mm] \in [/mm] N, also ist

     x [mm] \le [/mm] sup M und x [mm] \le [/mm] sup N.

Damit ist x [mm] \le [/mm] s.

FRED

>  
>
> Gruß


Bezug
                
Bezug
Supremum der Schnittmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Do 07.02.2013
Autor: Paivren

Hallo Fred, danke Dir!

Das ist ja fast ein Zweizeiler :(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de