www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Supremum und Infimum
Supremum und Infimum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum und Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Mo 21.05.2012
Autor: rollroll

Aufgabe
Zeige: In einem angeordneten Körper K gilt genau dann das Vollständigkeitsaxiom (jede nach oben beschränkte Teilmenge besitzt ein Sup in K), wenn jede nach unten beschränkte Teilmenge von K ein Infimum in K hat.

Es gilt x [mm] \le [/mm] a  [mm] \gdw [/mm] -a [mm] \le [/mm] -x.

a ist also genau dann kleinste obere Schranke für eine Menge M , wenn -a größte untere Schranke für [mm] M^{-1} [/mm] = {-x | x [mm] \in [/mm] M } ist.

Ist damit nicht schon alles gezeigt (weil ja Äquivalenz gilt)?

        
Bezug
Supremum und Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 21.05.2012
Autor: fred97


> Zeige: In einem angeordneten Körper K gilt genau dann das
> Vollständigkeitsaxiom (jede nach oben beschränkte
> Teilmenge besitzt ein Sup in K), wenn jede nach unten
> beschränkte Teilmenge von K ein Infimum in K hat.
>  Es gilt x [mm]\le[/mm] a  [mm]\gdw[/mm] -a [mm]\le[/mm] -x.
>  
> a ist also genau dann kleinste obere Schranke für eine
> Menge M , wenn -a größte untere Schranke für [mm]M^{-1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=

> {-x | x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M } ist.

>  
> Ist damit nicht schon alles gezeigt (weil ja Äquivalenz
> gilt)?

Du hast schon die richtige Idee. Aber etwas aisführlicher sollt der Beweis schon sein.

FRED


Bezug
                
Bezug
Supremum und Infimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Mo 21.05.2012
Autor: rollroll

An welcher Stelle soll ich denn noch was ergänzen?

Bezug
                        
Bezug
Supremum und Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Di 22.05.2012
Autor: rollroll

Bzw. an welcher Stelle / welchen Stellen ist der Beweis denn unvollständig?

Bezug
                                
Bezug
Supremum und Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Di 22.05.2012
Autor: angela.h.b.


> Bzw. an welcher Stelle / welchen Stellen ist der Beweis
> denn unvollständig?

Hallo,

Du machst Andeutungen, überläßt aber zu viel der Fantasie des Lesers.


Du willst für einen angeordneten Körper K zeigen:
jede nach oben beschränkte Teilmenge besitzt ein Sup in K
<==>
jede nach unten beschränkte Teilmenge von K hat ein Infimum in K.

"==>"
Hier würde man erwarten, daß es losgeht mit:
"sei M eine nach unten beschränkte Teilmenge von K."

Und dann müßtest Du mithilfe der Voraussetzung eine lückenlose Argumentation entwickeln, die darin gipfelt, daß M ein Infimum in K hat.

LG Angela



Bezug
                                        
Bezug
Supremum und Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Di 22.05.2012
Autor: rollroll

=> Sei also M eine nach oben beschränkte, nicht-leere Teilmenge von K.
Dann besitzt M eine obere Schranke a (sup(M)=a) und es gilt [mm] \forall [/mm] x [mm] \in [/mm] M:
x [mm] \le [/mm] a.  x [mm] \le [/mm] a ist äquivalent zu -a [mm] \le [/mm] -x.Also ist -a größte untere Schranke von M.  a ist also genau dann kleinste obere Schranke für eine Menge M, wenn -a größte untere Schranke für [mm] M^{-} [/mm] = {-x| x [mm] \in [/mm] M} ist. Also ist -a=inf(M). M besitzt also ein Infimum in K.

Ist die Hinrichtung so korrekt?

Bezug
                                                
Bezug
Supremum und Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Di 22.05.2012
Autor: fred97


> => Sei also M eine nach oben beschränkte, nicht-leere
> Teilmenge von K.
>  Dann besitzt M eine obere Schranke a (sup(M)=a) und es
> gilt [mm]\forall[/mm] x [mm]\in[/mm] M:
>  x [mm]\le[/mm] a.  x [mm]\le[/mm] a ist äquivalent zu -a [mm]\le[/mm] -x.


> Also ist -a größte untere Schranke von M.  

Hier meinst Du wohl [mm] M^{-} [/mm]


Dass -a die größte untere Schranke von [mm] M^{-} [/mm] ist,  solltest Du noch begründen.




a ist also genau dann

> kleinste obere Schranke für eine Menge M, wenn -a größte
> untere Schranke für [mm]M^{-}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {-x| x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M} ist. Also ist

> -a=inf(M). M besitzt also ein Infimum in K.
>  
> Ist die Hinrichtung so korrekt?

Ist der Delinquent denn auch wirklich tot ?

FRED


Bezug
                                                        
Bezug
Supremum und Infimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 Di 22.05.2012
Autor: rollroll

Ok, danke. Die Rückrichtung geht ja dann analog dazu.
Ist das, was ich zur Lipschitz-konstante geschrieben (in einer anderen Frage) hatte, ok?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de