www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Supremumsnorm - Hilbertraum
Supremumsnorm - Hilbertraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremumsnorm - Hilbertraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:51 Di 11.05.2010
Autor: blacksoul

Aufgabe
(a) Sei X [mm] \not= \emptyset [/mm] eine Menge und E := [mm] l^\infty(X) [/mm] der in Beispiel 1.9b definierte Raum mit der ebenfalls definierten Norm [mm] \parallel \cdot \parallel_\infty. [/mm] Zeigen Sie, dass die beiden Aussagen

(i)  X ist einelementig,
(ii) Es gibt ein Skalarprodukt auf E, dass die Norm [mm] \parallel \cdot \parallel_\infty [/mm] erzeugt und E zu einem Hilbertraum macht.

äquivalent sind.

(b) Seien a,b [mm] \in \IR [/mm] mit a < b und f:[a,b] [mm] \to\IK [/mm] eine beschränkte Funktion, die an höchstens endlich vielen Stellen unstetig ist. Für alle [mm] \varphi \in [/mm] C([a,b]) gelte

                               [mm] \integral_{a}^{b}{f(t) \varphi(t) dt} [/mm] = 0.

Zeigen Sie, dass dann die Funktion f, dort wo sie stetig ist, verschwindet.


Beispiel 1.9b:
[mm] l^\infty(X) :=\{f:X\to \IK | f \text{ } beschr"ankt\} [/mm]
[mm] \parallel [/mm] f [mm] \parallel_\infty [/mm] := [mm] \sup_{x \in X} [/mm] |f(x)| und [mm] |\cdot| [/mm] ist eine Norm in [mm] \IK [/mm]

Hallo,

leider habe ich mit diesen beiden Aufgaben so meine "Problemchen" :) Wir hatten bisher in der Vorlesung allg. Normen, Hilberträume, lineare Operatoren/Operatornorm und den Satz von Riesz (grobe Zusammenfassung).
Bei der Aufgabe (a) bin ich nur darauf gekommen, da X einelementig ist, dass die Supremumsnorm von f gleich der Norm von f in [mm] \IK [/mm] ist:
[mm] \parallel [/mm] f [mm] \parallel_\infty [/mm] := [mm] \sup_{x \in X} [/mm] |f(x)| = |f(x)|.
Aber ob mir das überhaupt an irgendeiner Stelle was bringt, hab ich leider keine Ahnung.
Bei Aufgabe (b) bin ich jetzt auch schon eine Weile am rumüberlegen und habe noch keine Idee für irgendeinen Ansatz.



        
Bezug
Supremumsnorm - Hilbertraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 12.05.2010
Autor: SEcki


>  Bei der Aufgabe (a) bin ich nur darauf gekommen, da X
> einelementig ist, dass die Supremumsnorm von f gleich der
> Norm von f in [mm]\IK[/mm] ist:
>  [mm]\parallel[/mm] f [mm]\parallel_\infty[/mm] := [mm]\sup_{x \in X}[/mm] |f(x)| =
> |f(x)|.

Genau

>  Aber ob mir das überhaupt an irgendeiner Stelle was
> bringt, hab ich leider keine Ahnung.

Man muss folgendes sehen: wieviele beschränkte Funktionen gibt es denn hier? Anders: du kannst zu jedem Köperelement genau ein Urbild finden. Nun kannst du dir mal überlegen zu welchem Raum der dann isomoprh ist ...

Falls du min. 2 Elemente hast, musst du die Annahme zum Widerspruch führen, da findest du dann Elemente mit [m]||f||+||g||=||f+g||[/m]

>  Bei Aufgabe (b) bin ich jetzt auch schon eine Weile am
> rumüberlegen und habe noch keine Idee für irgendeinen
> Ansatz.

Nimm eine Stetigekitsstelle x. Finde dann ein, so dass [m]f*\phi\ge 0[/m] uns stetig ist(eine SPitze um die Stetigkeitsstelle herum, die das gleiche Vorzeichen wie f hat und verschwindet). Was weisst du wenn das Integral einer stetigen Funktion mit [m]\ge 0[/m] verschwindet?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de