www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Surjektiv/Rechtsinvers
Surjektiv/Rechtsinvers < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektiv/Rechtsinvers: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Fr 10.02.2012
Autor: quasimo

Aufgabe
Beweise:
[mm] \phi:V->W [/mm] surjektiv, linear. Dass existiert lineares [mm] \psi:W->V [/mm]  so dass [mm] \phi \circ \psi [/mm] = [mm] id_w (\psi [/mm] ist rechtsinvers zu [mm] \phi) [/mm]

Ich komme da nicht wirklich voran. Ich hab auch nicht wirklich einen Plan.



        
Bezug
Surjektiv/Rechtsinvers: Antwort
Status: (Antwort) fertig Status 
Datum: 00:39 Sa 11.02.2012
Autor: Berieux

Hi!

> Beweise:
>  [mm]\phi:V->W[/mm] surjektiv, linear. Dass existiert lineares
> [mm]\psi:W->V[/mm]  so dass [mm]\phi \circ \psi[/mm] = [mm]id_w (\psi[/mm] ist
> rechtsinvers zu [mm]\phi)[/mm]

[mm]ker(\phi)[/mm] ist ein Untervektorraum von [mm]V[/mm] mit einer Basis [mm]C[/mm]. Erweitere nun C zu einer Basis B von V. Mach dir klar, dass [mm]\phi|_{span(B\backslash C)}[/mm] ein Isomorphismus von [mm]span(B\backslash C)[/mm] nach W ist.

Viele Grüße,
Berieux

>  Ich komme da nicht wirklich voran. Ich hab auch nicht
> wirklich einen Plan.
>  
>  


Bezug
        
Bezug
Surjektiv/Rechtsinvers: Antwort
Status: (Antwort) fertig Status 
Datum: 01:14 Sa 11.02.2012
Autor: Marcel

Hallo,

> Beweise:
>  [mm]\phi:V->W[/mm] surjektiv, linear. Dass existiert lineares
> [mm]\psi:W->V[/mm]  so dass [mm]\phi \circ \psi[/mm] = [mm]id_w (\psi[/mm] ist
> rechtsinvers zu [mm]\phi)[/mm]
>  Ich komme da nicht wirklich voran. Ich hab auch nicht
> wirklich einen Plan.

sei [mm] $\mathbb{B}_W=\{w_i: i \in I\}$ [/mm] eine Basis von [mm] $W\,.$ [/mm] Dann ist [mm] $\phi^{-1}(\{w_i\}) \not=\emptyset$ [/mm] für jeden Basisvektor [mm] $w_i$ [/mm] aus [mm] $\mathbb{B}_W \subseteq W\,.$ [/mm] Für jeden Basisvektor [mm] $w_i$ [/mm] kannst Du also mindestens ein [mm] $v_i \in [/mm] V$ finden mit [mm] $\phi(v_i)=w_i\,.$ [/mm] (Das folgt wegen der Surjektivität.)
Wähle nun für jedes [mm] $w_i$ [/mm] genau ein solches [mm] $v_i\,,$ [/mm] und definiere [mm] $\psi: [/mm] W [mm] \to [/mm] V$ erstmal durch [mm] $\psi(w_i):=v_i$ [/mm] für alle $i [mm] \in I\,,$ [/mm] und fordere: [mm] $\psi$ [/mm] sei linear.
Weil eine lineare Abbildung durch Angabe der Bilder bzgl. einer Basis eindeutig bestimmt ist, ist dann [mm] $\psi: [/mm] W [mm] \to [/mm] V$ eine (eindeutig bestimmte, wohldefinierte) lineare Abbildung.

Sei nun $w [mm] \in W\,.$ [/mm] Dann kann [mm] $w=\sum_{n=1}^{N_w} \alpha_{{f_w(n)}} w_{f_w(n)}$ [/mm] geschrieben werden (endliche Linearkombination von Basisvektoren von [mm] $W\,$ [/mm] - beachte, dass sowohl die Anzahl [mm] $N_w$ [/mm] von [mm] $w\,$ [/mm] abhängt, als auch, welche Basisvektoren bzgl. [mm] $w\,$ [/mm] gebraucht werden - daher steht im unteren Index [mm] $f_w(n)\,$ [/mm] und nicht nur $n$).

(Alternativ:
Es gibt eine endliche Teilmenge [mm] $J=J_w \subseteq [/mm] I$ mit [mm] $w=\sum_{j \in J} \alpha_j w_j\,.$ [/mm] So kannst Du das meinetwegen auch schreiben und benutzen - im Endeffekt habe ich oben genau das/sowas hingeschrieben, nur formal ein wenig anders verpackt - oben wäre etwa [mm] $|J|=|J_w|=N_w$!) [/mm]

Bedenke nun, dass [mm] $(\phi \circ \psi)(w_i)=w_i$ [/mm] für jedes [mm] $w_i \in \mathbb{B}_W$ [/mm] gilt - und benutze auch die Linearität von [mm] $\phi \circ \psi$ [/mm] (warum ist die gegeben?), um [mm] $(\phi \circ \psi)(w)=w$ [/mm] einzusehen!

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de