www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Surjektivitaet/Injektivitaet m
Surjektivitaet/Injektivitaet m < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektivitaet/Injektivitaet m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:05 So 10.10.2010
Autor: mausbln1991

Aufgabe 1
Seien A,B und C nicht leere Mengen, und seien f : A → B und g : B → C Abbildungen.

Wenn g ◦ f surjektiv ist und wenn g injektiv ist, dann ist f surjektiv.

Aufgabe 2
Seien A,B und C nicht leere Mengen, und seien f : A → B und g : B → C Abbildungen.

Wenn g◦f injektiv ist und wenn f surjektiv ist, dann ist g injektiv.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich muss sagen ob die Aussagen wahr oder falsch sind.
Ich habe mir stunden ueber stunden gedanken gemacht, aber ich komme einfach nicht drauf, ich versteh das einfach nicht.... Kann mir jemand bitte einen Tipp geben (ich mein ihr koenntet mir auch die loesung sagen aber das bringt mir ja nichts...)

ich hoffe mir kann jemand schnell helfen.

        
Bezug
Surjektivitaet/Injektivitaet m: Antwort
Status: (Antwort) fertig Status 
Datum: 04:40 So 10.10.2010
Autor: ChopSuey

Hallo,

die Definitionen sind wichtig.

$ f $ ist injektiv genau dann, wenn $ [mm] x_1 \not= x_2 \Rightarrow f(x_1) \not= f(x_2) [/mm] \ \ [mm] \forall [/mm]  x [mm] \in [/mm] A $

$ f $ ist surjektiv genau dann, wenn $ [mm] \forall [/mm] y [mm] \in [/mm] B \ [mm] \exists [/mm] x [mm] \in [/mm] A : f(x) = y $ und dazu Äquivalent $\ f(A) = B $

Sei also $ g [mm] \circ [/mm] f : A [mm] \to [/mm] C $ surjektiv und $ g: B [mm] \to [/mm] C $ injektiv.

Nun überleg' dir mit Hilfe der Definitionen, warum $ f $ zwangsläufig surjektiv sein muss.

Mach dir dazu klar, wie  $ g [mm] \circ [/mm] f  $ 'aussieht'.

Grüße
ChopSuey

Bezug
                
Bezug
Surjektivitaet/Injektivitaet m: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:46 So 10.10.2010
Autor: mausbln1991

Also ich habe jetzt die surjektivitaet für $ g [mm] \circ [/mm] f $ aufgestellt:

$ [mm] \forall [/mm] c [mm] \in [/mm] C \ [mm] \exists [/mm] a [mm] \in [/mm] A : g(f(a)) = c $

und da es für jedes c ein b gibt und für jedes c ein a gibt muss es auch für jedes b ein a geben.

also ist die Aussage wahr

oder habe ich da einen Denkfehler?

und zu der 2. Aufgabe(Wenn g◦f injektiv ist und wenn f surjektiv ist, dann ist g injektiv.) da vermute ich, dass es falsch ist, aber eine genaue erklaerung habe ich da nicht, an der erklaerung arbeite ich noch :)

Bezug
                        
Bezug
Surjektivitaet/Injektivitaet m: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 So 10.10.2010
Autor: ullim

Hi,

> Also ich habe jetzt die surjektivitaet für [mm]g \circ f[/mm]
> aufgestellt:
>  
> [mm]\forall c \in C \ \exists a \in A : g(f(a)) = c[/mm]
>  
> und da es für jedes c ein b gibt und für jedes c ein a
> gibt muss es auch für jedes b ein a geben.
>  


Keine Ahnung was Du mit den Aussagen meinst, zu jedem c gibt es b und zu jedem c gibt es ein a (mit welchen Eigenschaften denn?)

Versuchs mal so:

Für b [mm] \in [/mm] B ist g(b) [mm] \in [/mm] C. Weil g [mm] \circ [/mm] f surjektiv ist gibt es ein a [mm] \in [/mm] A mit g(f(a)=g(b)

Weil g injektiv ist folgt, f(a) = b. Also gibt es zu jedem b [mm] \in [/mm] B ein a [mm] \in [/mm] A mit f(a)=b. Also ist f surjektiv.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de