www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Surjektivität bil. Abbildung
Surjektivität bil. Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektivität bil. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 13.01.2011
Autor: Sujentha

Aufgabe
[mm]K[T]_d[/mm] bezeichne den K-Vektorraum der Polynome vom Grad höchstens d.Wir betrachten die bilineare Abbildung [mm]\alpha:K[T]_2 \times K[T]_2 \to K[T]_4[/mm],die dem Paar (f,g) das Produkt [mm]f \cdot g[/mm] zuordnet.Ihre Aufgabe ist es zu untersuchen, ob [mm]\alpha[/mm] surjektiv ist. Dabei sei
(i)  K=[mm]\IC[/mm]
(ii) K=[mm]\IR[/mm]
(iii)K=[mm]\IQ[/mm]
(iv) K=[mm]\IF_2[/mm]


Hallo,

also ich habe mir folgendes überlegt:

(ii)
K=[mm]\IR[/mm]
[mm]t^2+1 \in \IR[T]_4[/mm] hat kein Urbild, denn [mm]t^2+1[/mm] als Produkt wäre [mm](t^2+1)=(t+i)(t-i)[/mm] und [mm]i \notin \IR[/mm] somit nicht surjektiv

(iii)
K=[mm]\IQ[/mm]
[mm]t^2-2 \in \IQ[T]_4[/mm] hat kein Urbild, denn [mm]t^2-2[/mm] als Produkt wäre [mm](t^2-2)=(t- \wurzel{2})(t+\wurzel{2})[/mm] und [mm]\wurzel{2} \notin \IQ[/mm]
Also auch hier keine Surjektivität

Ich hoffe,dass das soweit erstmal richtig ist.
Ich komme nur leider bei (i) und (iv) nicht weiter,bin mir zwar ziemlich sicher,dass es für die komplexen Zahlen surjektiv ist,weiß jedoch nicht wie ich's zeigen soll.
Und für den [mm]\IF_2[/mm] hab ich weder einen Beweis noch ein Gegenbeispiel für Surjektivität finden können.
Hoffe daher,dass ihr mir weiterhelfen könntet bei den anderen beiden Teilaufgaben.
Gruß,Sujentha.

        
Bezug
Surjektivität bil. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Do 13.01.2011
Autor: gfm


> [mm]K[T]_d[/mm] bezeichne den K-Vektorraum der Polynome vom Grad
> höchstens d.Wir betrachten die bilineare Abbildung
> [mm]\alpha:K[T]_2 \times K[T]_2 \to K[T]_4[/mm],die dem Paar (f,g)
> das Produkt [mm]f \cdot g[/mm] zuordnet.Ihre Aufgabe ist es zu
> untersuchen, ob [mm]\alpha[/mm] surjektiv ist. Dabei sei
>  (i)  K=[mm]\IC[/mm]
>  (ii) K=[mm]\IR[/mm]
>  (iii)K=[mm]\IQ[/mm]
>  (iv) K=[mm]\IF_2[/mm]
>  
> Hallo,
>  
> also ich habe mir folgendes überlegt:
>  
> (ii)
>  K=[mm]\IR[/mm]
>  [mm]t^2+1 \in \IR[T]_4[/mm] hat kein Urbild, denn [mm]t^2+1[/mm] als Produkt
> wäre [mm](t^2+1)=(t+i)(t-i)[/mm] und [mm]i \notin \IR[/mm] somit nicht
> surjektiv

[mm] t^2+1=(t^2+1)*1 [/mm]

[mm] (t^2+1),1\in \IR[T]_2 [/mm]

>  
> (iii)
>  K=[mm]\IQ[/mm]
>  [mm]t^2-2 \in \IQ[T]_4[/mm] hat kein Urbild, denn [mm]t^2-2[/mm] als Produkt
> wäre [mm](t^2-2)=(t- \wurzel{2})(t+\wurzel{2})[/mm] und [mm]\wurzel{2} \notin \IQ[/mm]

Ebenso.

LG

gfm


Bezug
                
Bezug
Surjektivität bil. Abbildung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:12 Do 13.01.2011
Autor: Sujentha

Oh Mist,das hatte ich überhaupt nicht bedacht... :-(
Hast du sonst noch einen Tipp für mich?

Bezug
                        
Bezug
Surjektivität bil. Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Do 13.01.2011
Autor: gfm


> Oh Mist,das hatte ich überhaupt nicht bedacht... :-(
>  Hast du sonst noch einen Tipp für mich?

Wenn ich z.B. [mm] \IC [/mm] betrachte hat dort jedes Polynom 4-ten Grades genau 4 (gegebenenfalls mehrfache) Nullstellen [mm] p=a*(x-x_1)*...*(x-x_4). [/mm] Daraus kann man immer zwei Polynome 2-ten Gerades bauen.

LG

gfm

Bezug
                                
Bezug
Surjektivität bil. Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 13.01.2011
Autor: Sujentha

Okay,also würde das doch bedeuten,dass es für [mm]\IC[/mm] surjektiv ist,oder?
Und für K=[mm]\IR[/mm] kann ich doch dann [mm]t^4+1[/mm] als Gegenbeispiel bringen,oder?
Also $ [mm] (t^4+1)=(t^2+i)(t^2-i) [/mm] $ und [mm]i \notin \IR[/mm]
Meine vorher genannten Beispiele hatten also einfach nur einen zu kleinen Grad,sie hätten anstatt vom Grad 2 vom Grad 4 sein müssen.

Bezug
                                        
Bezug
Surjektivität bil. Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Sa 15.01.2011
Autor: Lippel

Nabend,

> Okay,also würde das doch bedeuten,dass es für [mm]\IC[/mm]
> surjektiv ist,oder?

Genau.

>  Und für K=[mm]\IR[/mm] kann ich doch dann [mm]t^4+1[/mm] als Gegenbeispiel
> bringen,oder?
>  Also [mm](t^4+1)=(t^2+i)(t^2-i)[/mm] und [mm]i \notin \IR[/mm]

Richtig.

Für [mm] $K=\IF_2$ [/mm] betrachte das Polynom: [mm][mm] f:=t^4+t+1\:[/mm] [mm]
Zunächst hat [mm]f\:[/mm] keine Nullstellen in [mm] $\IF_2$, [/mm] d.h. falls es [mm]g, h \in \IF_2[t]_2[/mm] gibt mit [mm]f= gh\:[/mm], so dürfen auch diese keine Nullstelle haben. Es gibt aber in [mm]\IF_2{[t]_2}\:[/mm] nur ein einziges Polynom ohne Nullstelle, nämlich [mm]t^2+t+1\:[/mm] (das kann man sehn, indem man sich einfach mal alle hinschreibt, es gibt ja nicht so viele, da die Koeffizienten nur 0 und 1 sein dürfen). Es ist aber [mm] $(t^2+t+1)*(t^2+t+1) \not=f$. [/mm] Damit kann es eine solche Zerlegung nicht geben und damit ist deine Abbildung nicht surjektiv.

LG Lippel

Bezug
                                                
Bezug
Surjektivität bil. Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Sa 15.01.2011
Autor: Sujentha

Vielen Dank für deine Antwort
$ [mm] f=t^4+t+1 [/mm] $ genau das Polynom hatte ich sogar auch schon hier auf meinem Zettel stehn (neben einigen anderen gescheiterten Versuchen),doch ich hatte Probleme das im [mm]\IF_2[/mm] zu begründen. Danke nochmal.

LG, Sujentha.

Bezug
                        
Bezug
Surjektivität bil. Abbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 15.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de