www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Symmetrie
Symmetrie < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie: Vorzeichen
Status: (Frage) beantwortet Status 
Datum: 08:45 Mi 13.04.2005
Autor: Kirke85

Ich habe versucht die Symmetrie zum Ursprung auszurechnen, aber jetzt weiß ich nicht, ob ich Vorzeichen oder Rechenzeichen ändern muss.

f(x)= (4x³-7x²-4)/(8x²)

-f(x)= - ((4x³-7x²-4)/(8x²))

Wie bringe ich das Minuszeichen bei -f(x) in die Klammer?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Symmetrie: Minuszeichen
Status: (Antwort) fertig Status 
Datum: 09:19 Mi 13.04.2005
Autor: Loddar

Hallo Kirke,


gerade auf den frühen Morgen (noch ohne [kaffeetrinker] !!) wäre eine nette Begrüßung sehr schön ...


> Ich habe versucht die Symmetrie zum Ursprung auszurechnen,
> aber jetzt weiß ich nicht, ob ich Vorzeichen oder
> Rechenzeichen ändern muss.


Deine Funktion heißt also:
$f(x) \ =  \ [mm] \bruch{4x^3-7x^2-4}{8x^2}$ [/mm]

(Ruhig auch mal unseren Formel-Editor benutzen.)


Wenn Du nun $f(-x)$ berechnen möchtest, mußt Du für jedes $x$ ein $(-x)$ einsetzen:

$f(-x) \ =  \ [mm] \bruch{4*(-x)^3-7*(-x)^2-4}{8*(-x)^2}$ [/mm]



Für $- f(x)$ brauchst Du doch nur im Zähler die Vorzeichen umdrehen:

$- f(x) \ =  \ - [mm] \bruch{4x^3-7x^2-4}{8x^2} [/mm] \ =  \ [mm] \bruch{-4x^3+7x^2+4}{8x^2}$ [/mm]


Du kannst aber diesen Symmetrienachweis auch abkürzen, da es sich hier nicht um eine sogenannte "ungerade Funktion" handelt, denn es treten nicht ausschließlich ungerade Potenzen von $x$ auf ...


Wenn Du Deine Funktion auch zunächst etwas umformst, erkennst Du schnell, daß hier keine Symmetrie vorliegt:

$f(x) \ =  \ [mm] \bruch{4x^3-7x^2-4}{8x^2} [/mm] \ =  \ [mm] \bruch{4x^3}{8x^2} [/mm] - [mm] \bruch{7x^2}{8x^2} [/mm] - [mm] \bruch{4}{8x^2} [/mm] \ =  \ [mm] \bruch{1}{2}x [/mm] - [mm] \bruch{7}{8} [/mm] - [mm] \bruch{1}{2x^2}$ [/mm]


Klar(er) nun?

Gruß
Loddar


Bezug
                
Bezug
Symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Mi 13.04.2005
Autor: Max

Hallo ihr beiden,

natürlich ist $f(-x)=-f(x)$ die bessere Möglichkeit die Punktsymmetrie zum Ursprung nachzuweisen, denn die Regel mit den ungeraden bzw. geraden Funktion gilt nur für Polynome, denn zB ist [mm] $g(x)=\frac{x^3}{x^1}$ [/mm] eine Funktion die nur ungerade Potenzen enthält, aber trotzdem achsensymmetrisch zur $y$-Achse ist.

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de