www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Symmetrie gebrochratio. Gr.
Symmetrie gebrochratio. Gr. < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Symmetrie gebrochratio. Gr.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:15 Do 02.11.2006
Autor: Stefan-auchLotti

[mm] \text{Hi,} [/mm]

[mm] \text{Es sei folgendes definiert:} [/mm]

$f(b-x)=f(b+x) [mm] \Rightarrow [/mm] G(f)\ [mm] \text{ist \emph{achsensymmetrisch} zur Geraden mit}\ [/mm] x=b$

[mm] \text{und} [/mm]

$f(b-x)=2f(b)-f(b+x) [mm] \Rightarrow [/mm] G(f)\ [mm] \text{ist \emph{punktsymmetrisch} zum Punkt}\ [/mm] (b|f(b))$

[mm] \text{Meine Frage: Kann ich, ohne den Punkt oder die Gerade, zu dem/der der Graph symmetrisch ist, zu kennen,} [/mm]

[mm] \text{herausfinden, welcher Punkt dafür bestimmt ist, wenn ich also nur die Gleichung der Funktion kenne?} [/mm]

[mm] \text{Stefan.} [/mm]

        
Bezug
Symmetrie gebrochratio. Gr.: Hinweis
Status: (Antwort) fertig Status 
Datum: 18:43 Do 02.11.2006
Autor: informix

Hallo Stefan-auchLotti,

> [mm]\text{Hi,}[/mm]
>  
> [mm]\text{Es sei folgendes definiert:}[/mm]
>  
> [mm]f(b-x)=f(b+x) \Rightarrow G(f)\ \text{ist \emph{achsensymmetrisch} zur Geraden mit}\ x=b[/mm]
>  
> [mm]\text{und}[/mm]
>  
> [mm]f(b-x)=2f(b)-f(b+x) \Rightarrow G(f)\ \text{ist \emph{punktsymmetrisch} zum Punkt}\ (b|f(b))[/mm]
>  
> [mm]\text{Meine Frage: Kann ich, ohne den Punkt oder die Gerade, zu dem/der der Graph symmetrisch ist, zu kennen,}[/mm]
>  
> [mm]\text{herausfinden, welcher Punkt dafür bestimmt ist, wenn ich also nur die Gleichung der Funktion kenne?}[/mm]
>  
> [mm]\text{Stefan.}[/mm]  

Mir fällt dazu gerade keine "Regel" oder so ein.
Aber: im Verlauf einer Kurvenuntersuchung fällt einem bei den speziellen Punkte häufig auf, dass sie symmetrisch liegen: Nullstellen, Extrempunkte, ...
Daraus entnimmt man eine Vermutung und prüft dann mit obigen Regeln nach:

jeweils die Mitte zwischen zwei x-Werten und zwei y-Werten sollte dann der Symmetriepunkt liegen,
für die Symmetriegerade braucht man nur die x-Werte. ;-)

Gruß informix

Bezug
                
Bezug
Symmetrie gebrochratio. Gr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 Do 02.11.2006
Autor: hase-hh

moin stefan,

ich frage mich gerade warum du nicht einfach in die funktion allgemein einsetzt und lösungen für b bestimmst.

z.b. bei achsensymmetrie


[mm] f(x)=x^2 [/mm] - 2x + 4


f(b-x)=f(b+x)

[mm] (x-b)^2 [/mm] -2(x-b) + 4 = [mm] (x+b)^2 [/mm] -2(b+x) + 4

-2bx+2x = 2bx -2x

4bx = 4x    für x ungleich 0 gilt

b=1

nur eine idee...

im übrigen gebrochen rational ist das alles noch nicht; dabei müsste man noch gesondert def.-lücken betrachten...

gruß
wolfgang


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de