Symmetrische Gruppe, 3-Zykel < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:11 Do 07.03.2013 | Autor: | Katthi |
Aufgabe | (a) Bestimmen Sie, ob [mm] \sigma = (1,2,3,4)(3,5)(2,6,5,3)^2(5,6) \in S_6 [/mm] sich als Produkt von 3-Zykeln schreiben lässt.
(b) Zeigen Sie: Es gilt [mm] \summe_{i=1}^{n} | \sigma (i) -i | \equiv 0 ~mod(2) [/mm] für alle [mm] \sigma \in S_n [/mm]. |
Hallo Leute,
also die a) habe ich schon gelöst und zwar habe ich hierbei jeweils das signum jedes Teiles bestimmt. Da wir 3-Zykel betrachten müsste hier jedes signum 1 ergeben, denn [mm] sgn = (-1)^{(r-1)} [/mm], wobei r=3.
Dazu habe ich dann noch die Frage, ob nur insgesamt das Produkt aller Teile gleich 1 sein muss oder jedes einzelne?!
und bei der (b) habe ich eine Musterlösung. Hierbei wird folgendermaßen begonnen:
[mm] \sigma (i) -i = \pm (\sigma (i) -i) \equiv \sigma (i) -i ~ mod(2) [/mm] für alle [mm] i \in {1,...,n} [/mm].
Kann mir jemand erklären, wie man auf diesen Schritt kommt? Und auf das modulo 2?
Vielen Dank für eure Hilfe.
Viele Grüße,
Katthi
|
|
|
|
moin,
> also die a) habe ich schon gelöst und zwar habe ich
> hierbei jeweils das signum jedes Teiles bestimmt. Da wir
> 3-Zykel betrachten müsste hier jedes signum 1 ergeben,
> denn [mm]sgn = (-1)^{(r-1)} [/mm], wobei r=3.
> Dazu habe ich dann noch die Frage, ob nur insgesamt das
> Produkt aller Teile gleich 1 sein muss oder jedes
> einzelne?!
Das Signum ist eine gute Idee. Es lässt sich [mm] $\sigma$ [/mm] als Produkt von $3-$Zykeln schreiben genau dann wenn [mm] $sgn(\sigma) [/mm] = 1$.
Hierfür musst du aber wirklich das komplette Signum von [mm] $\sigma$ [/mm] berechnen, das in diesem Fall $-1$ ist, weswegen [mm] $\sigma$ [/mm] sich nicht als Produkt von $3-$Zykeln schreiben lässt.
> und bei der (b) habe ich eine Musterlösung.
Bei der b) müsstest du erstmal erzählen, wie genau die Aufgabenstellung aussehen soll.
Ist [mm] $\sum_{i=1}^6 (\sigma(i) [/mm] - i)$ gemeint?
Das ist für [mm] $\sigma \in S_6$ [/mm] sicher immer gleich 0; nicht nur gerade.
Also stimmt an der Aufgabe wohl irgendwas noch nicht, erzähl nochmal, was genau da gemeint ist.
Auch die Musterlösung ist mehr als seltsam...
lg
Schadow
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:18 Do 07.03.2013 | Autor: | Katthi |
Hallo Schadow,
danke für deine Antwort.
Super, dann hab ich die a) schon komplett, weil wenn die Länge eines Zykels gerade ist, dann ist das signum -1 und dann kann ich das schön ausrechnen :)
Zur b) hast du recht, hatte da auch was falsche abgeschrieben, hat mein Drucker wohl die Betragsstriche verschlungen und die [mm] S_6 [/mm] ist ne [mm] S_n [/mm] ;)
also so: [mm] \summe_{i=1}^{n} | \sigma (i) -i | \equiv 0 ~mod(2) [/mm] für alle [mm] \sigma \in S_n [/mm]
Ansonsten ist das die ganze Aufgabenstellung. Man soll halt zeigen, dass die linke Seite gleich der rechten ist und dafür hat die Musterlösung diesen Ansatz gewählt, den ich nicht verstehe :(
Man zieht dann die Summe auseinander und da [mm] \sigma [/mm] bijektiv ist, gilt [mm] \sigma (i) = i [/mm]. Das finde ich ja auch irgendwie sinnvoll, aber diesen modulo-Schritt leider garnicht...
Viele Grüße,
Katthi
|
|
|
|
|
Ah, ok.
Sind wir mod 2, so gilt $|a-b| [mm] \equiv [/mm] a-b$.
Das heißt also wir können die Beträge einfach weglassen.
Sind die Beträge weg, so kann man benutzen, dass [mm] $\sigma$ [/mm] bijektiv ist, das sich also jedes $j$ als [mm] $\sigma(i)$ [/mm] für ein geeignetes $i$ schreiben lässt.
Damit erhält man:
[mm] $\sum_{i=1}^n |\sigma(i)-i| \equiv \sum_{i=1}^n \sigma(i)-i [/mm] = [mm] \sum_{i=1}^n \sigma(i) [/mm] - [mm] \sum_{i=1}^n [/mm] i = [mm] \sum_{j=1}^n [/mm] j - [mm] \sum_{i=1}^n [/mm] i = 0$ (mod $2$)
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:33 Fr 08.03.2013 | Autor: | Katthi |
Hallo Schadow,
ah super, diese Begründung hat mir gefehlt. Also sofern ich mich bei Zykeln befinde und da nen Betrag drinsteht, werfe ich am besten das mod(2) drauf, damit ich die Beträge weglassen kann. Oder macht das nicht immer Sinn? Aber müsste es doch eigentlich, sofern es darum geht, etwas umzuformen?!
Viele Grüße,
Katthi
|
|
|
|
|
Ja, das kannst du allgemein machen, nicht nur bei Zykeln.
|
|
|
|