www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - System von Kongruenzen lösen
System von Kongruenzen lösen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

System von Kongruenzen lösen: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 12:15 Mo 19.10.2015
Autor: MinLi

Aufgabe
Lösen Sie folgendes System von Kongruenzen:

9x + 2y -3 [mm] \equiv [/mm] 6 mod 20
-3x + 7y +3 [mm] \equiv [/mm] 11 mod 20

Hallo,

ich soll diese Aufgabe lösen, weiß aber nicht so richtig wie.
Wir haben in der Vorlesung zu Kongruenzen den chinesischen Restsatz eingeführt, aber den kann man in der Aufgabe, so wie sie da steht, nicht verwenden, da die beiden Modulos nicht teilerfremd sind.
Ich habe versucht das System etwas umzuschreiben:

9x + 2y [mm] \equiv [/mm] 9 mod 20
-3x + 7y [mm] \equiv [/mm] 8 mod 20

und dann habe ich mir gedacht, dass man vielleicht mit Substitution weiterkommt. Also habe ich die erste Gleichung so umgeschrieben, dass man x in die zweite Gleichung einfügen kann:

x [mm] \equiv [/mm] 1 - 2/9y mod 20
-3*(1 - 2/9y) + 7y [mm] \equiv [/mm] 8 mod 20

[mm] \gdw [/mm]

x [mm] \equiv [/mm] 1 - 2/9y mod 20
y [mm] \equiv [/mm] 33/23 mod 20

[mm] \gdw [/mm]

x [mm] \equiv [/mm] 47/69 mod 20
y [mm] \equiv [/mm] 33/23 mod 20

Ich kann mir aber nicht vorstellen dass dies die Lösung zu dem System ist, da ich mod20 gar nicht verwendet habe und da dann die Lösung in [mm] \IZ_{20} [/mm] gleich der Lösung in [mm] \IZ [/mm] wäre und dann hätten wir diese Aufgabe bestimmt nicht als Übungsaufgabe gekriegt.
Also nun meine Frage: Wie kann man solch ein System von Kongruenzen lösen? (Bitte keine ganze Lösung, sondern nur ein paar Hilfestellungen)

Viele Grüße, MinLi

        
Bezug
System von Kongruenzen lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 19.10.2015
Autor: abakus


> Lösen Sie folgendes System von Kongruenzen:

>

> 9x + 2y -3 [mm]\equiv[/mm] 6 mod 20
> -3x + 7y +3 [mm]\equiv[/mm] 11 mod 20
> Hallo,

>

> ich soll diese Aufgabe lösen, weiß aber nicht so richtig
> wie.
> Wir haben in der Vorlesung zu Kongruenzen den chinesischen
> Restsatz eingeführt, aber den kann man in der Aufgabe, so
> wie sie da steht, nicht verwenden, da die beiden Modulos
> nicht teilerfremd sind.
> Ich habe versucht das System etwas umzuschreiben:

>

> 9x + 2y [mm]\equiv[/mm] 9 mod 20
> -3x + 7y [mm]\equiv[/mm] 8 mod 20

Hallo,
aus die zweite Kongruenz könnte man verdreifachen zu
[mm] -9x+21y$\equiv$ [/mm] 24 mod 20 und dann zur ersten addieren.
Man erhält  
[mm]  23y$\equiv$ [/mm] 33 mod 20 ; das entspricht dem, was du weiter unten in Bruchschreibweise hast.
Wegen  [mm] 23$\equiv$ [/mm] 3 mod 20  gilt auch  [mm] 23y$\equiv$ [/mm] 3y mod 20.
Man kann nun  in  [mm]  23y$\equiv$ [/mm] 33 mod 20 große Zahlen durch kongruente kleinere Zahlen ersetzen und bekommt
[mm]  3y$\equiv$ [/mm] 33 mod 20 ; nach Division durch 11 (Modul ändert sich wegen ggT(11,20)=1 nicht) erhält man
  [mm] y$\equiv$ [/mm] 11 mod 20.

Damit folgt    [mm] 2y$\equiv$ 22$\equiv$ [/mm] 2 mod 20.
Somit kann man auch noch in einer anderen Kongruenz 2y durch 2 ersetzen.
Gruß Abakus



>

> und dann habe ich mir gedacht, dass man vielleicht mit
> Substitution weiterkommt. Also habe ich die erste Gleichung
> so umgeschrieben, dass man x in die zweite Gleichung
> einfügen kann:

>

> x [mm]\equiv[/mm] 1 - 2/9y mod 20
> -3*(1 - 2/9y) + 7y [mm]\equiv[/mm] 8 mod 20

>

> [mm]\gdw[/mm]

>

> x [mm]\equiv[/mm] 1 - 2/9y mod 20
> y [mm]\equiv[/mm] 33/23 mod 20

>

> [mm]\gdw[/mm]

>

> x [mm]\equiv[/mm] 47/69 mod 20
> y [mm]\equiv[/mm] 33/23 mod 20

>

> Ich kann mir aber nicht vorstellen dass dies die Lösung zu
> dem System ist, da ich mod20 gar nicht verwendet habe und
> da dann die Lösung in [mm]\IZ_{20}[/mm] gleich der Lösung in [mm]\IZ[/mm]
> wäre und dann hätten wir diese Aufgabe bestimmt nicht als
> Übungsaufgabe gekriegt.
> Also nun meine Frage: Wie kann man solch ein System von
> Kongruenzen lösen? (Bitte keine ganze Lösung, sondern nur
> ein paar Hilfestellungen)

>

> Viele Grüße, MinLi

Bezug
                
Bezug
System von Kongruenzen lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Mi 21.10.2015
Autor: MinLi

Danke für die schnelle Antwort.
Viele Grüße, MinLi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de