www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - T-Verteilung
T-Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

T-Verteilung: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 08:30 Do 23.04.2020
Autor: sancho1980

Hallo,

eins vorneweg: Diese Frage ist zur T-Verteilung. Bitte nicht drüber wundern, dass ich gleichzeitig einen anderen Thread mit einer ähnlichen Frage zur F-Verteilung habe.

In meinem Buch wird die T-Verteilung  vorgestellt; für meine Begriffe leider etwas zu kurz:

Definition T-Verteilung:

"Gegeben sind die beiden unabhängigen Zufallsvariablen X und Z, wobei X chi-quadrat-verteilt mit m Freiheitsgraden und Z standardnormalverteilt sei. Dann heißt die Verteilung der Zufallsvariablen

T = [mm] \bruch{Z}{\wurzel{X/m}} [/mm]

t-Verteilung (oder Student-Verteilung) mit m Freiheitsgraden,.."

Danach wird noch ein Bisschen auf die Eigenschaften der Veteilung eingegangen und dann folgt einfach folgender Satz:

"Sei S die Standardabweichung und [mm] \overline{X} [/mm] das arithmetische Mittel einer zufälligen Stichprobe [mm] X_1, [/mm] ..., [mm] X_n [/mm] vom Umfang n, die aus einer normalverteilten Grundgesamtheit mit Erwartungswert [mm] \mu [/mm] stammt. Wir setzen voraus, dass die n Beobachtungen [mm] X_1, [/mm] ..., [mm] X_n [/mm] unabhängig erfolgt sind. Dann besitzt die Zufallsvariable T = [mm] \bruch{\overline{X} - \mu}{S/\wurzel{n}} [/mm]

eine t-Verteilung mit m = n - 1 Freiheitsgraden."

Meine Frage hierzu: Wie hängen [mm] \bruch{Z}{\wurzel{X/m}} [/mm] und [mm] \bruch{\overline{X} - \mu}{S/\wurzel{n}} [/mm] zusammen? Ich weiß zwar, dass [mm] \bruch{(n - 1)S^2}{\sigma^2} [/mm] eine [mm] \chi^2-Verteilung [/mm] hat, wenn [mm] S^2 [/mm] die Varianz einer zufälligen Stichprobe [mm] X_1, [/mm] ..., [mm] X_n [/mm] vom Umfang n aus einer normalverteilten Grundgesamtheit mit Varianz [mm] \sigma^2 [/mm] ist, aber in der Formel für T kommt ja [mm] \sigma^2 [/mm] gar nicht vor.

1) Welche Entsprechungen gibt es in der Formel für T für die Variablen X, Z und m?
2) Warum hat T dann m = n - 1 Freiheitsgrade?

Danke und Gruß,

Martin

        
Bezug
T-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Do 23.04.2020
Autor: Gonozal_IX

Hiho,

hier analog zur anderen Frage: Geh schrittweise vor. Du hast es ja nun schon fast selbst geschafft und kurz vor dem Ziel aufgehört zu denken…


> Ich weiß zwar, dass [mm]\bruch{(n - 1)S^2}{\sigma^2}[/mm] eine
> [mm]\chi^2-Verteilung[/mm] hat, wenn [mm]S^2[/mm] die Varianz einer
> zufälligen Stichprobe [mm]X_1,[/mm] ..., [mm]X_n[/mm] vom Umfang n aus einer
> normalverteilten Grundgesamtheit mit Varianz [mm]\sigma^2[/mm] ist,
> aber in der Formel für T kommt ja [mm]\sigma^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

gar nicht vor.

In der Formel für $T$ steht im Zähler aber auch gar keine standardnormalverteilte Zufallsvariable, wie es für die $t$-Verteilung aber gefordert wird!
Wenn wir das berücksichtigen und entsprechend normieren (was ist denn die Varianz von $\overline{X} - \mu$?), sieht man den Rest doch aber sofort!

Es ist nämlich: $T =  \bruch{\overline{X} - \mu}{S/\wurzel{n}} = \bruch{\bruch{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt\bruch{S^2}{\sigma^2}} = \frac{Z}{\sqrt{\frac{X}{n-1}}}$ mit

$Z= {\bruch{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$ (wie gefordert!)

und $X = \bruch{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de